Cargando…

Integrative approaches in cryogenic electron microscopy: Recent advances in structural biology and future perspectives

Cellular factories engage numerous highly complex “molecular machines” to perform pivotal biological functions. 3D structural visualization is an effective way to understand the functional mechanisms of these biomacromolecules. The “resolution revolution” has established cryogenic electron microscop...

Descripción completa

Detalles Bibliográficos
Autores principales: Banerjee, Aneek, Bhakta, Sayan, Sengupta, Jayati
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829201/
https://www.ncbi.nlm.nih.gov/pubmed/33532719
http://dx.doi.org/10.1016/j.isci.2021.102044
Descripción
Sumario:Cellular factories engage numerous highly complex “molecular machines” to perform pivotal biological functions. 3D structural visualization is an effective way to understand the functional mechanisms of these biomacromolecules. The “resolution revolution” has established cryogenic electron microscopy (cryo-EM) as a preferred structural biology tool. In parallel with the advances in cryo-EM methodologies aiming at atomic resolution, several innovative approaches have started emerging where other techniques are sensibly integrated with cryo-EM to obtain additional insights into the biological processes. For example, combining the time-resolved technique with high-resolution cryo-EM enables discerning structures of short-lived intermediates in the functional pathway of a biomolecule. Likewise, integrating mass spectrometry (MS) techniques with cryo-EM allows deciphering structural organizations of large molecular assemblies. Here, we discuss how the data generated upon combining either time resolve or MS techniques with cryo-EM supplement structural elucidations with in-depth understanding of the function of cellular macromolecules when they participate in fundamental biological processes.