Cargando…
Multi-Feature Input Deep Forest for EEG-Based Emotion Recognition
Due to the rapid development of human–computer interaction, affective computing has attracted more and more attention in recent years. In emotion recognition, Electroencephalogram (EEG) signals are easier to be recorded than other physiological experiments and are not easily camouflaged. Because of...
Autores principales: | Fang, Yinfeng, Yang, Haiyang, Zhang, Xuguang, Liu, Han, Tao, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829220/ https://www.ncbi.nlm.nih.gov/pubmed/33505263 http://dx.doi.org/10.3389/fnbot.2020.617531 |
Ejemplares similares
-
An improved multi-input deep convolutional neural network for automatic emotion recognition
por: Chen, Peiji, et al.
Publicado: (2022) -
An Investigation of Deep Learning Models for EEG-Based Emotion Recognition
por: Zhang, Yaqing, et al.
Publicado: (2020) -
Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features
por: Yang, Fu, et al.
Publicado: (2019) -
Exploring EEG Features in Cross-Subject Emotion Recognition
por: Li, Xiang, et al.
Publicado: (2018) -
Deep learning-based self-induced emotion recognition using EEG
por: Ji, Yerim, et al.
Publicado: (2022)