Cargando…
Perceived Mental Workload Classification Using Intermediate Fusion Multimodal Deep Learning
A lot of research has been done on the detection of mental workload (MWL) using various bio-signals. Recently, deep learning has allowed for novel methods and results. A plethora of measurement modalities have proven to be valuable in this task, yet studies currently often only use a single modality...
Autores principales: | Dolmans, Tenzing C., Poel, Mannes, van ’t Klooster, Jan-Willem J. R., Veldkamp, Bernard P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829255/ https://www.ncbi.nlm.nih.gov/pubmed/33505259 http://dx.doi.org/10.3389/fnhum.2020.609096 |
Ejemplares similares
-
Towards a Multimodal Model of Cognitive Workload Through Synchronous Optical Brain Imaging and Eye Tracking Measures
por: İşbilir, Erdinç, et al.
Publicado: (2019) -
Mental Workload Estimation Based on Physiological Features for Pilot-UAV Teaming Applications
por: Singh, Gaganpreet, et al.
Publicado: (2021) -
Cognitive Workload and Workload Transitions Elicit Curvilinear Hemodynamics During Spatial Working Memory
por: McKendrick, Ryan, et al.
Publicado: (2019) -
Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using EEG
por: Tremmel, Christoph, et al.
Publicado: (2019) -
Mental State Classification Using Multi-Graph Features
por: Chen, Guodong, et al.
Publicado: (2022)