Cargando…
Comparison of Intensity Modulated Radiotherapy Treatment Plans Between 1.5T MR-Linac and Conventional Linac
In this study, we assess the dosimetric qualities and usability of planning for 1.5 T MR-Linac based intensity modulated radiotherapy (MRL-IMRT) for various clinical sites in comparison with IMRT plans using a conventional linac. In total of 30 patients with disease sites in the brain, esophagus, lu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829462/ https://www.ncbi.nlm.nih.gov/pubmed/33472549 http://dx.doi.org/10.1177/1533033820985871 |
_version_ | 1783641171595100160 |
---|---|
author | Ding, Shouliang Li, Yongbao Liu, Hongdong Li, Rui Wang, Bin Zhang, Jun Chen, Yan Huang, Xiaoyan |
author_facet | Ding, Shouliang Li, Yongbao Liu, Hongdong Li, Rui Wang, Bin Zhang, Jun Chen, Yan Huang, Xiaoyan |
author_sort | Ding, Shouliang |
collection | PubMed |
description | In this study, we assess the dosimetric qualities and usability of planning for 1.5 T MR-Linac based intensity modulated radiotherapy (MRL-IMRT) for various clinical sites in comparison with IMRT plans using a conventional linac. In total of 30 patients with disease sites in the brain, esophagus, lung, rectum and vertebra were re-planned retrospectively for simulated MRL-IMRT using the Elekta Unity dedicated treatment planning system (TPS) Monaco (v5.40.01). Currently, the step-and-shoot (ss) is the only delivery technique for IMRT available on Unity. All patients were treated on an Elekta Versa HD(TM) with IMRT using the dynamic multileaf collimator (dMLC) technique, and the plans were designed using Monaco v5.11. For comparison, the same dMLC-IMRT plan was recalculated with the same machine and TPS but only changing the technique to step-and-shoot. The dosimetric qualities of the MRL-IMRT plans, to be evaluated by the Dose Volume Histograms (DVH) metrics, Homogeneity Index and Conformality Index, were compared with the clinical plans. The planning usability was measured by the optimization time and the number of Monitor Units (MUs). Comparing MRL-IMRT with conventional linac based plans, all created plans were clinically equivalent to current clinical practice. However, MRL-IMRT plans had higher dose to skin and larger low dose region of normal tissues. Furthermore, MRL-IMRT plans had significantly reduced optimization time by comparing conventional linac based plans. The number of MUs of MRL-IMRT was increased by 23% compared with ss-IMRT, and no difference from dMLC-IMRT. In conclusion, clinically acceptable plans can be achieved with 1.5 T MR-Linac system for multiple tumor sites. Given the differences in machine characteristics, some minor differences in plan quality were found between MR-Linac plans and current clinical practice and this should be considered in clinical practice. |
format | Online Article Text |
id | pubmed-7829462 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-78294622021-02-05 Comparison of Intensity Modulated Radiotherapy Treatment Plans Between 1.5T MR-Linac and Conventional Linac Ding, Shouliang Li, Yongbao Liu, Hongdong Li, Rui Wang, Bin Zhang, Jun Chen, Yan Huang, Xiaoyan Technol Cancer Res Treat Original Article In this study, we assess the dosimetric qualities and usability of planning for 1.5 T MR-Linac based intensity modulated radiotherapy (MRL-IMRT) for various clinical sites in comparison with IMRT plans using a conventional linac. In total of 30 patients with disease sites in the brain, esophagus, lung, rectum and vertebra were re-planned retrospectively for simulated MRL-IMRT using the Elekta Unity dedicated treatment planning system (TPS) Monaco (v5.40.01). Currently, the step-and-shoot (ss) is the only delivery technique for IMRT available on Unity. All patients were treated on an Elekta Versa HD(TM) with IMRT using the dynamic multileaf collimator (dMLC) technique, and the plans were designed using Monaco v5.11. For comparison, the same dMLC-IMRT plan was recalculated with the same machine and TPS but only changing the technique to step-and-shoot. The dosimetric qualities of the MRL-IMRT plans, to be evaluated by the Dose Volume Histograms (DVH) metrics, Homogeneity Index and Conformality Index, were compared with the clinical plans. The planning usability was measured by the optimization time and the number of Monitor Units (MUs). Comparing MRL-IMRT with conventional linac based plans, all created plans were clinically equivalent to current clinical practice. However, MRL-IMRT plans had higher dose to skin and larger low dose region of normal tissues. Furthermore, MRL-IMRT plans had significantly reduced optimization time by comparing conventional linac based plans. The number of MUs of MRL-IMRT was increased by 23% compared with ss-IMRT, and no difference from dMLC-IMRT. In conclusion, clinically acceptable plans can be achieved with 1.5 T MR-Linac system for multiple tumor sites. Given the differences in machine characteristics, some minor differences in plan quality were found between MR-Linac plans and current clinical practice and this should be considered in clinical practice. SAGE Publications 2021-01-21 /pmc/articles/PMC7829462/ /pubmed/33472549 http://dx.doi.org/10.1177/1533033820985871 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Article Ding, Shouliang Li, Yongbao Liu, Hongdong Li, Rui Wang, Bin Zhang, Jun Chen, Yan Huang, Xiaoyan Comparison of Intensity Modulated Radiotherapy Treatment Plans Between 1.5T MR-Linac and Conventional Linac |
title | Comparison of Intensity Modulated Radiotherapy Treatment Plans
Between 1.5T MR-Linac and Conventional Linac |
title_full | Comparison of Intensity Modulated Radiotherapy Treatment Plans
Between 1.5T MR-Linac and Conventional Linac |
title_fullStr | Comparison of Intensity Modulated Radiotherapy Treatment Plans
Between 1.5T MR-Linac and Conventional Linac |
title_full_unstemmed | Comparison of Intensity Modulated Radiotherapy Treatment Plans
Between 1.5T MR-Linac and Conventional Linac |
title_short | Comparison of Intensity Modulated Radiotherapy Treatment Plans
Between 1.5T MR-Linac and Conventional Linac |
title_sort | comparison of intensity modulated radiotherapy treatment plans
between 1.5t mr-linac and conventional linac |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829462/ https://www.ncbi.nlm.nih.gov/pubmed/33472549 http://dx.doi.org/10.1177/1533033820985871 |
work_keys_str_mv | AT dingshouliang comparisonofintensitymodulatedradiotherapytreatmentplansbetween15tmrlinacandconventionallinac AT liyongbao comparisonofintensitymodulatedradiotherapytreatmentplansbetween15tmrlinacandconventionallinac AT liuhongdong comparisonofintensitymodulatedradiotherapytreatmentplansbetween15tmrlinacandconventionallinac AT lirui comparisonofintensitymodulatedradiotherapytreatmentplansbetween15tmrlinacandconventionallinac AT wangbin comparisonofintensitymodulatedradiotherapytreatmentplansbetween15tmrlinacandconventionallinac AT zhangjun comparisonofintensitymodulatedradiotherapytreatmentplansbetween15tmrlinacandconventionallinac AT chenyan comparisonofintensitymodulatedradiotherapytreatmentplansbetween15tmrlinacandconventionallinac AT huangxiaoyan comparisonofintensitymodulatedradiotherapytreatmentplansbetween15tmrlinacandconventionallinac |