Cargando…
Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with few-shot classification
Deep learning (DL) has been successfully applied to the diagnosis of ophthalmic diseases. However, rare diseases are commonly neglected due to insufficient data. Here, we demonstrate that few-shot learning (FSL) using a generative adversarial network (GAN) can improve the applicability of DL in the...
Autores principales: | Yoo, Tae Keun, Choi, Joon Yul, Kim, Hong Kyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829497/ https://www.ncbi.nlm.nih.gov/pubmed/33492598 http://dx.doi.org/10.1007/s11517-021-02321-1 |
Ejemplares similares
-
Few-shot out-of-distribution detection for automated screening in retinal OCT images using deep learning
por: Araújo, Teresa, et al.
Publicado: (2023) -
Automated classification of polyps using deep learning architectures and few-shot learning
por: Krenzer, Adrian, et al.
Publicado: (2023) -
Hybrid Fine-Tuning Strategy for Few-Shot Classification
por: Zhao, Lei, et al.
Publicado: (2022) -
Efficient few-shot machine learning for classification of EBSD patterns
por: Kaufmann, Kevin, et al.
Publicado: (2021) -
Insights into few shot learning approaches for image scene classification
por: Soudy, Mohamed, et al.
Publicado: (2021)