Cargando…
The Adipose Microenvironment Dysregulates the Mammary Myoepithelial Cells and Could Participate to the Progression of Breast Cancer
Breast cancer is the most common cancer among women worldwide. Overweight and obesity are now recognized as established risk factors for this pathology in postmenopausal women. These conditions are also believed to be responsible for higher recurrence and mortality rates. Reciprocal interactions hav...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829501/ https://www.ncbi.nlm.nih.gov/pubmed/33505957 http://dx.doi.org/10.3389/fcell.2020.571948 |
_version_ | 1783641180719808512 |
---|---|
author | Delort, Laetitia Cholet, Juliette Decombat, Caroline Vermerie, Marion Dumontet, Charles Castelli, Florence A. Fenaille, François Auxenfans, Céline Rossary, Adrien Caldefie-Chezet, Florence |
author_facet | Delort, Laetitia Cholet, Juliette Decombat, Caroline Vermerie, Marion Dumontet, Charles Castelli, Florence A. Fenaille, François Auxenfans, Céline Rossary, Adrien Caldefie-Chezet, Florence |
author_sort | Delort, Laetitia |
collection | PubMed |
description | Breast cancer is the most common cancer among women worldwide. Overweight and obesity are now recognized as established risk factors for this pathology in postmenopausal women. These conditions are also believed to be responsible for higher recurrence and mortality rates. Reciprocal interactions have been described between adipose and cancer cells. An adipose microenvironment favors a greater proliferation of cancer cells, their invasion and even resistance to anti-cancer treatments. In addition, the chronic low-grade inflammation observed in obese individuals is believed to amplify these processes. Among the cell types present in the breast, myoepithelial cells (MECs), located at the interface of the epithelial cells and the stroma, are considered “tumor suppressor” cells. During the transition from ductal carcinoma in situ to invasive cancer, disorganization or even the disappearance of MECs is observed, thereby enhancing the ability of the cancer cells to migrate. As the adipose microenvironment is now considered as a central actor in the progression of breast cancer, our objective was to evaluate if it could be involved in MEC functional modifications, leading to the transition of in situ to invasive carcinoma, particularly in obese patients. Through a co-culture model, we investigated the impact of human adipose stem cells from women of normal weight and obese women, differentiated or not into mature adipocytes, on the functionality of the MECs by measuring changes in viability, apoptosis, gene, and miRNA expressions. We found that adipose cells (precursors and differentiated adipocytes) could decrease the viability of the MECs, regardless of the original BMI. The adipose cells could also disrupt the expression of the genes involved in the maintenance of the extracellular matrix and to amplify the expression of leptin and inflammatory markers. miR-122-5p and miR-132-3p could also be considered as targets for adipose cells. The metabolite analyses revealed specific profiles that may be involved in the growth of neoplastic cells. All of these perturbations could thus be responsible for the loss of tumor suppressor status of MECs and promote the transition from in situ to invasive carcinoma. |
format | Online Article Text |
id | pubmed-7829501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78295012021-01-26 The Adipose Microenvironment Dysregulates the Mammary Myoepithelial Cells and Could Participate to the Progression of Breast Cancer Delort, Laetitia Cholet, Juliette Decombat, Caroline Vermerie, Marion Dumontet, Charles Castelli, Florence A. Fenaille, François Auxenfans, Céline Rossary, Adrien Caldefie-Chezet, Florence Front Cell Dev Biol Cell and Developmental Biology Breast cancer is the most common cancer among women worldwide. Overweight and obesity are now recognized as established risk factors for this pathology in postmenopausal women. These conditions are also believed to be responsible for higher recurrence and mortality rates. Reciprocal interactions have been described between adipose and cancer cells. An adipose microenvironment favors a greater proliferation of cancer cells, their invasion and even resistance to anti-cancer treatments. In addition, the chronic low-grade inflammation observed in obese individuals is believed to amplify these processes. Among the cell types present in the breast, myoepithelial cells (MECs), located at the interface of the epithelial cells and the stroma, are considered “tumor suppressor” cells. During the transition from ductal carcinoma in situ to invasive cancer, disorganization or even the disappearance of MECs is observed, thereby enhancing the ability of the cancer cells to migrate. As the adipose microenvironment is now considered as a central actor in the progression of breast cancer, our objective was to evaluate if it could be involved in MEC functional modifications, leading to the transition of in situ to invasive carcinoma, particularly in obese patients. Through a co-culture model, we investigated the impact of human adipose stem cells from women of normal weight and obese women, differentiated or not into mature adipocytes, on the functionality of the MECs by measuring changes in viability, apoptosis, gene, and miRNA expressions. We found that adipose cells (precursors and differentiated adipocytes) could decrease the viability of the MECs, regardless of the original BMI. The adipose cells could also disrupt the expression of the genes involved in the maintenance of the extracellular matrix and to amplify the expression of leptin and inflammatory markers. miR-122-5p and miR-132-3p could also be considered as targets for adipose cells. The metabolite analyses revealed specific profiles that may be involved in the growth of neoplastic cells. All of these perturbations could thus be responsible for the loss of tumor suppressor status of MECs and promote the transition from in situ to invasive carcinoma. Frontiers Media S.A. 2021-01-11 /pmc/articles/PMC7829501/ /pubmed/33505957 http://dx.doi.org/10.3389/fcell.2020.571948 Text en Copyright © 2021 Delort, Cholet, Decombat, Vermerie, Dumontet, Castelli, Fenaille, Auxenfans, Rossary and Caldefie-Chezet. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Delort, Laetitia Cholet, Juliette Decombat, Caroline Vermerie, Marion Dumontet, Charles Castelli, Florence A. Fenaille, François Auxenfans, Céline Rossary, Adrien Caldefie-Chezet, Florence The Adipose Microenvironment Dysregulates the Mammary Myoepithelial Cells and Could Participate to the Progression of Breast Cancer |
title | The Adipose Microenvironment Dysregulates the Mammary Myoepithelial Cells and Could Participate to the Progression of Breast Cancer |
title_full | The Adipose Microenvironment Dysregulates the Mammary Myoepithelial Cells and Could Participate to the Progression of Breast Cancer |
title_fullStr | The Adipose Microenvironment Dysregulates the Mammary Myoepithelial Cells and Could Participate to the Progression of Breast Cancer |
title_full_unstemmed | The Adipose Microenvironment Dysregulates the Mammary Myoepithelial Cells and Could Participate to the Progression of Breast Cancer |
title_short | The Adipose Microenvironment Dysregulates the Mammary Myoepithelial Cells and Could Participate to the Progression of Breast Cancer |
title_sort | adipose microenvironment dysregulates the mammary myoepithelial cells and could participate to the progression of breast cancer |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829501/ https://www.ncbi.nlm.nih.gov/pubmed/33505957 http://dx.doi.org/10.3389/fcell.2020.571948 |
work_keys_str_mv | AT delortlaetitia theadiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT choletjuliette theadiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT decombatcaroline theadiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT vermeriemarion theadiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT dumontetcharles theadiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT castelliflorencea theadiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT fenaillefrancois theadiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT auxenfansceline theadiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT rossaryadrien theadiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT caldefiechezetflorence theadiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT delortlaetitia adiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT choletjuliette adiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT decombatcaroline adiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT vermeriemarion adiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT dumontetcharles adiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT castelliflorencea adiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT fenaillefrancois adiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT auxenfansceline adiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT rossaryadrien adiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer AT caldefiechezetflorence adiposemicroenvironmentdysregulatesthemammarymyoepithelialcellsandcouldparticipatetotheprogressionofbreastcancer |