Cargando…

Estimating Bar Graph Averages: Overcoming Within-the-Bar Bias

Although most people are not aware of it, bias can occur when interpreting graphs. Within-the-bar bias describes a misinterpretation of the distribution of data underlying bar graphs that indicate an average or where the average estimation point moves inside the bar when the average of several graph...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Hyunmin, Ji, Jeayeong, Yun, Yeji, Han, Kwanghee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829521/
https://www.ncbi.nlm.nih.gov/pubmed/33613956
http://dx.doi.org/10.1177/2041669520987254
Descripción
Sumario:Although most people are not aware of it, bias can occur when interpreting graphs. Within-the-bar bias describes a misinterpretation of the distribution of data underlying bar graphs that indicate an average or where the average estimation point moves inside the bar when the average of several graphs is estimated. This study proposes and tests two methods based on information processing to reduce within-the-bar bias. The first method facilitates bottom-up processing by changing various graph features, such as presenting confidence intervals, placing boundaries around the graph, and showing cumulative bars with different tones. The second method facilitates top-down processing by instructing participants to estimate the mean based on a dot at the end of each bar. Testing of the first method showed that cumulative bars reduced bias, but the other methods did not. The second method was found to reduce bias. Overall, our results demonstrate that the accurate interpretation of bar graphs can be facilitated through the manipulation of specific graph features and instruction.