Cargando…
Constructing Dynamic Functional Networks via Weighted Regularization and Tensor Low-Rank Approximation for Early Mild Cognitive Impairment Classification
Brain functional networks constructed via regularization has been widely used in early mild cognitive impairment (eMCI) classification. However, few methods can properly reflect the similarities and differences of functional connections among different people. Most methods ignore some topological at...
Autores principales: | Jiao, Zhuqing, Ji, Yixin, Zhang, Jiahao, Shi, Haifeng, Wang, Chuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829545/ https://www.ncbi.nlm.nih.gov/pubmed/33505965 http://dx.doi.org/10.3389/fcell.2020.610569 |
Ejemplares similares
-
Constructing Dynamic Brain Functional Networks via Hyper-Graph Manifold Regularization for Mild Cognitive Impairment Classification
por: Ji, Yixin, et al.
Publicado: (2021) -
Tracking online low-rank approximations of higher-order incomplete streaming tensors
por: Thanh, Le Trung, et al.
Publicado: (2023) -
Integration and Segregation of Dynamic Functional Connectivity States for Mild Cognitive Impairment Revealed by Graph Theory Indicators
por: Jiao, Zhuqing, et al.
Publicado: (2021) -
3D Tensor Based Nonlocal Low Rank Approximation in Dynamic PET Reconstruction
por: Xie, Nuobei, et al.
Publicado: (2019) -
Multimodal Classification Framework Based on Hypergraph Latent Relation for End-Stage Renal Disease Associated with Mild Cognitive Impairment
por: Fu, Xidong, et al.
Publicado: (2023)