Cargando…

Investigations of Shape, Material and Excitation Wavelength Effects on Field Enhancement in SERS Advanced Tips

This article, a part of the larger research project of Surface-Enhanced Raman Scattering (SERS), describes an advanced study focusing on the shapes and materials of Tip-Enhanced Raman Scattering (TERS) designated to serve as part of a novel imager device. The initial aim was to define the optimal sh...

Descripción completa

Detalles Bibliográficos
Autores principales: Mandelbaum, Yaakov, Mottes, Raz, Zalevsky, Zeev, Zitoun, David, Karsenty, Avi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830025/
https://www.ncbi.nlm.nih.gov/pubmed/33477470
http://dx.doi.org/10.3390/nano11010237
Descripción
Sumario:This article, a part of the larger research project of Surface-Enhanced Raman Scattering (SERS), describes an advanced study focusing on the shapes and materials of Tip-Enhanced Raman Scattering (TERS) designated to serve as part of a novel imager device. The initial aim was to define the optimal shape of the “probe”: tip or cavity, round or sharp. The investigations focused on the effect of shape (hemi-sphere, hemispheroid, ellipsoidal cavity, ellipsoidal rod, nano-cone), and the effect of material (Ag, Au, Al) on enhancement, as well as the effect of excitation wavelengths on the electric field. Complementary results were collected: numerical simulations consolidated with analytical models, based on solid assumptions. Preliminary experimental results of fabrication and structural characterization are also presented. Thorough analyses were performed around critical parameters, such as the plasmonic metal—Silver, Aluminium or Gold—using Rakic model, the tip geometry—sphere, spheroid, ellipsoid, nano-cone, nano-shell, rod, cavity—and the geometry of the plasmonic array: cross-talk in multiple nanostructures. These combined outcomes result in an optimized TERS design for a large number of applications.