Cargando…

Optimization of Plasmonic Gold Nanoparticle Concentration in Green LED Light Active Dental Photopolymer

Gold nanoparticles (AuNPs) display surface plasmon resonance (SPR) as a result of their irradiation at a targeted light frequency. SPR also results in heat production that increases the temperature of the surrounding environment, affecting polymerization. The aim was to investigate the SPR effect of...

Descripción completa

Detalles Bibliográficos
Autores principales: Bukovinszky, Katalin, Szalóki, Melinda, Csarnovics, István, Bonyár, Attila, Petrik, Péter, Kalas, Benjámin, Daróczi, Lajos, Kéki, Sándor, Kökényesi, Sándor, Hegedűs, Csaba
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830100/
https://www.ncbi.nlm.nih.gov/pubmed/33467688
http://dx.doi.org/10.3390/polym13020275
Descripción
Sumario:Gold nanoparticles (AuNPs) display surface plasmon resonance (SPR) as a result of their irradiation at a targeted light frequency. SPR also results in heat production that increases the temperature of the surrounding environment, affecting polymerization. The aim was to investigate the SPR effect of AuNPs on a dimethacrylate-based photopolymer system. The tested composites were designed to overlap the illumination required for the polymerization and the plasmon effect. The 5 nm-sized dodecanethiol capped AuNPs were applied in different concentrations in the matrix that were irradiated with green light (λ = 532 nm), where the Irgacure 784 photoinitiator also absorbs the light. The plasmonic effect was investigated for the refractive index change by surface plasmon resonance imaging (SPRi) supplemented by ellipsometry. Moreover, optical transmission and transmission electron micrographs (TEM), diametral tensile stress (DTS), and confocal Raman spectroscopy was performed to determine the degree of conversion (DC) at 1.0, 1.4, and 2.0 mW/cm(2) light intensities. It was found that the optimal conditions were at 0.0208 wt% AuNPs concentration and 1.4 mW/cm(2) light intensity at which the refractive index change, DTS, and DC data were all maximal. The study confirmed that AuNPs are applicable to improve the polymerization efficiency of dental composite resin.