Cargando…
Ant Colony-Based Hyperparameter Optimisation in Total Variation Reconstruction in X-ray Computed Tomography
In this paper, a computer-aided training method for hyperparameter selection of limited data X-ray computed tomography (XCT) reconstruction was proposed. The proposed method employed the ant colony optimisation (ACO) approach to assist in hyperparameter selection for the adaptive-weighted projection...
Autores principales: | Lohvithee, Manasavee, Sun, Wenjuan, Chretien, Stephane, Soleimani, Manuchehr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830391/ https://www.ncbi.nlm.nih.gov/pubmed/33467627 http://dx.doi.org/10.3390/s21020591 |
Ejemplares similares
-
A General Method for Motion Compensation in X-ray Computed Tomography
por: Hancock, Steven, et al.
Publicado: (2017) -
Hyperparameter optimisation and validation of registration algorithms for measuring regional ventricular deformation using retrospective gated computed tomography images
por: Razeghi, Orod, et al.
Publicado: (2021) -
Optimal hyperparameter selection of deep learning models for COVID-19 chest X-ray classification
por: Adedigba, Adeyinka P., et al.
Publicado: (2021) -
Geometric Hyperparameter Optimisation of ALICE Monte Carlo Transport Simulations - Summer Student Report
por: Swain, Anthony
Publicado: (2023) -
A Bayesian Hyperparameter Inference for Radon-Transformed Image Reconstruction
por: Shouno, Hayaru, et al.
Publicado: (2011)