Cargando…
Linear B-Cell Epitopes in Human Norovirus GII.4 Capsid Protein Elicit Blockade Antibodies
Human norovirus (HuNoV) is the leading cause of nonbacterial gastroenteritis worldwide with the GII.4 genotype accounting for over 80% of infections. The major capsid protein of GII.4 variants is evolving rapidly, resulting in new epidemic variants with altered antigenic potentials that must be cons...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830539/ https://www.ncbi.nlm.nih.gov/pubmed/33466932 http://dx.doi.org/10.3390/vaccines9010052 |
_version_ | 1783641439018680320 |
---|---|
author | Moeini, Hassan Afridi, Suliman Qadir Donakonda, Sainitin Knolle, Percy A. Protzer, Ulrike Hoffmann, Dieter |
author_facet | Moeini, Hassan Afridi, Suliman Qadir Donakonda, Sainitin Knolle, Percy A. Protzer, Ulrike Hoffmann, Dieter |
author_sort | Moeini, Hassan |
collection | PubMed |
description | Human norovirus (HuNoV) is the leading cause of nonbacterial gastroenteritis worldwide with the GII.4 genotype accounting for over 80% of infections. The major capsid protein of GII.4 variants is evolving rapidly, resulting in new epidemic variants with altered antigenic potentials that must be considered for the development of an effective vaccine. In this study, we identify and characterize linear blockade B-cell epitopes in HuNoV GII.4. Five unique linear B-cell epitopes, namely P2A, P2B, P2C, P2D, and P2E, were predicted on the surface-exposed regions of the capsid protein. Evolving of the surface-exposed epitopes over time was found to correlate with the emergence of new GII.4 outbreak variants. Molecular dynamic simulation (MD) analysis and molecular docking revealed that amino acid substitutions in the putative epitopes P2B, P2C, and P2D could be associated with immune escape and the appearance of new GII.4 variants by affecting solvent accessibility and flexibility of the antigenic sites and histo-blood group antigens (HBAG) binding. Testing the synthetic peptides in wild-type mice, epitopes P2B (336–355), P2C (367–384), and P2D (390–400) were recognized as GII.4-specific linear blockade epitopes with the blocking rate of 68, 55 and 28%, respectively. Blocking rate was found to increase to 80% using the pooled serum of epitopes P2B and P2C. These data provide a strategy for expanding the broad blockade potential of vaccines for prevention of NoV infection. |
format | Online Article Text |
id | pubmed-7830539 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78305392021-01-26 Linear B-Cell Epitopes in Human Norovirus GII.4 Capsid Protein Elicit Blockade Antibodies Moeini, Hassan Afridi, Suliman Qadir Donakonda, Sainitin Knolle, Percy A. Protzer, Ulrike Hoffmann, Dieter Vaccines (Basel) Article Human norovirus (HuNoV) is the leading cause of nonbacterial gastroenteritis worldwide with the GII.4 genotype accounting for over 80% of infections. The major capsid protein of GII.4 variants is evolving rapidly, resulting in new epidemic variants with altered antigenic potentials that must be considered for the development of an effective vaccine. In this study, we identify and characterize linear blockade B-cell epitopes in HuNoV GII.4. Five unique linear B-cell epitopes, namely P2A, P2B, P2C, P2D, and P2E, were predicted on the surface-exposed regions of the capsid protein. Evolving of the surface-exposed epitopes over time was found to correlate with the emergence of new GII.4 outbreak variants. Molecular dynamic simulation (MD) analysis and molecular docking revealed that amino acid substitutions in the putative epitopes P2B, P2C, and P2D could be associated with immune escape and the appearance of new GII.4 variants by affecting solvent accessibility and flexibility of the antigenic sites and histo-blood group antigens (HBAG) binding. Testing the synthetic peptides in wild-type mice, epitopes P2B (336–355), P2C (367–384), and P2D (390–400) were recognized as GII.4-specific linear blockade epitopes with the blocking rate of 68, 55 and 28%, respectively. Blocking rate was found to increase to 80% using the pooled serum of epitopes P2B and P2C. These data provide a strategy for expanding the broad blockade potential of vaccines for prevention of NoV infection. MDPI 2021-01-14 /pmc/articles/PMC7830539/ /pubmed/33466932 http://dx.doi.org/10.3390/vaccines9010052 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Moeini, Hassan Afridi, Suliman Qadir Donakonda, Sainitin Knolle, Percy A. Protzer, Ulrike Hoffmann, Dieter Linear B-Cell Epitopes in Human Norovirus GII.4 Capsid Protein Elicit Blockade Antibodies |
title | Linear B-Cell Epitopes in Human Norovirus GII.4 Capsid Protein Elicit Blockade Antibodies |
title_full | Linear B-Cell Epitopes in Human Norovirus GII.4 Capsid Protein Elicit Blockade Antibodies |
title_fullStr | Linear B-Cell Epitopes in Human Norovirus GII.4 Capsid Protein Elicit Blockade Antibodies |
title_full_unstemmed | Linear B-Cell Epitopes in Human Norovirus GII.4 Capsid Protein Elicit Blockade Antibodies |
title_short | Linear B-Cell Epitopes in Human Norovirus GII.4 Capsid Protein Elicit Blockade Antibodies |
title_sort | linear b-cell epitopes in human norovirus gii.4 capsid protein elicit blockade antibodies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830539/ https://www.ncbi.nlm.nih.gov/pubmed/33466932 http://dx.doi.org/10.3390/vaccines9010052 |
work_keys_str_mv | AT moeinihassan linearbcellepitopesinhumannorovirusgii4capsidproteinelicitblockadeantibodies AT afridisulimanqadir linearbcellepitopesinhumannorovirusgii4capsidproteinelicitblockadeantibodies AT donakondasainitin linearbcellepitopesinhumannorovirusgii4capsidproteinelicitblockadeantibodies AT knollepercya linearbcellepitopesinhumannorovirusgii4capsidproteinelicitblockadeantibodies AT protzerulrike linearbcellepitopesinhumannorovirusgii4capsidproteinelicitblockadeantibodies AT hoffmanndieter linearbcellepitopesinhumannorovirusgii4capsidproteinelicitblockadeantibodies |