Cargando…
Automated Sensing System for Real-Time Recognition of Trucks in River Dredging Areas Using Computer Vision and Convolutional Deep Learning
Sand theft or illegal mining in river dredging areas has been a problem in recent decades. For this reason, increasing the use of artificial intelligence in dredging areas, building automated monitoring systems, and reducing human involvement can effectively deter crime and lighten the workload of s...
Autores principales: | Chou, Jui-Sheng, Liu, Chia-Hsuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830807/ https://www.ncbi.nlm.nih.gov/pubmed/33466785 http://dx.doi.org/10.3390/s21020555 |
Ejemplares similares
-
Automated Truck Taxonomy Classification Using Deep Convolutional Neural Networks
por: Almutairi, Abdullah, et al.
Publicado: (2022) -
Effects of dredging on the vegetation in a small lowland river
por: Stępień, Edyta, et al.
Publicado: (2019) -
Digitise This! A Quick and Easy Remote Sensing Method to Monitor the Daily Extent of Dredge Plumes
por: Evans, Richard D., et al.
Publicado: (2012) -
Deep Sensing: Inertial and Ambient Sensing for Activity Context Recognition Using Deep Convolutional Neural Networks
por: Otebolaku, Abayomi, et al.
Publicado: (2020) -
Anthropogenic transformations of river ecosystems are not always bad for the environment: Multi-taxa analyses of changes in aquatic and terrestrial environments after dredging of a small lowland river
por: Stryjecki, Robert, et al.
Publicado: (2021)