Cargando…
Evidence of the presence of Borrelia burgdorferi in dogs and associated ticks in Egypt
BACKGROUND: Borrelia burgdorferi is the spirochete that causes Lyme Borreliosis (LB), which is a zoonotic tick-borne disease of humans and domestic animals. Hard ticks are obligate haematophagous ectoparasites that serve as vectors of Borrelia burgdorferi. Studies on the presence of Lyme borreliosis...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830850/ https://www.ncbi.nlm.nih.gov/pubmed/33494772 http://dx.doi.org/10.1186/s12917-020-02733-5 |
Sumario: | BACKGROUND: Borrelia burgdorferi is the spirochete that causes Lyme Borreliosis (LB), which is a zoonotic tick-borne disease of humans and domestic animals. Hard ticks are obligate haematophagous ectoparasites that serve as vectors of Borrelia burgdorferi. Studies on the presence of Lyme borreliosis in Egyptian animals and associated ticks are scarce. METHODS: This study was conducted to detect B. burgdorferi in different tick vectors and animal hosts. Three hundred animals (dogs=100, cattle=100, and camels=100) were inspected for tick infestation. Blood samples from 160 tick-infested animals and their associated ticks (n=1025) were collected and examined for the infection with B. burgdorferi by polymerase chain reaction (PCR) and sequencing of the 16S rRNA gene. The identified tick species were characterized molecularly by PCR and sequencing of the ITS2 region. RESULTS: The overall tick infestation rate among examined animals was 78.33% (235/300). The rate of infestation was significantly higher in camels (90%), followed by cattle (76%) and dogs (69%); (P = 0.001). Rhipicephalus sanguineus, Rhipicephalus (Boophilus) annulatus, and both Hyalomma dromedarii and Amblyomma variegatum, were morphologically identified from infested dogs, cattle, and camels; respectively. Molecular characterization of ticks using the ITS2 region confirmed the morphological identification, as well as displayed high similarities of R. sanguineus, H. dromedarii, and A. Variegatu with ticks identified in Egypt and various continents worldwide. Just one dog (1.67%) and its associated tick pool of R. sanguineus were positive for B. burgdorferi infection. The 16S rRNA gene sequence for B. burgdorferi in dog and R. sanguineus tick pool showed a 100% homology. CONCLUSION: Analyzed data revealed a relatively low rate of B. burgdorferi infection, but a significantly high prevalence of tick infestation among domesticated animals in Egypt, which possesses a potential animal and public health risk. Additionally, molecular characterization of ticks using the ITS2 region was a reliable tool to discriminate species of ticks and confirmed the morphological identification. |
---|