Cargando…
Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery
Nitrogen is an important indicator for monitoring wheat growth. The rapid development and wide application of non-destructive detection provide many approaches for estimating leaf nitrogen content (LNC) in wheat. Previous studies have shown that better results have been obtained in the estimation of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831037/ https://www.ncbi.nlm.nih.gov/pubmed/33477350 http://dx.doi.org/10.3390/s21020613 |
_version_ | 1783641550393180160 |
---|---|
author | Yang, Baohua Ma, Jifeng Yao, Xia Cao, Weixing Zhu, Yan |
author_facet | Yang, Baohua Ma, Jifeng Yao, Xia Cao, Weixing Zhu, Yan |
author_sort | Yang, Baohua |
collection | PubMed |
description | Nitrogen is an important indicator for monitoring wheat growth. The rapid development and wide application of non-destructive detection provide many approaches for estimating leaf nitrogen content (LNC) in wheat. Previous studies have shown that better results have been obtained in the estimation of LNC in wheat based on spectral features. However, the lack of automatically extracted features leads to poor universality of the estimation model. Therefore, a feature fusion method for estimating LNC in wheat by combining spectral features with deep features (spatial features) was proposed. The deep features were automatically obtained with a convolutional neural network model based on the PyTorch framework. The spectral features were obtained using spectral information including position features (PFs) and vegetation indices (VIs). Different models based on feature combination for evaluating LNC in wheat were constructed: partial least squares regression (PLS), gradient boosting decision tree (GBDT), and support vector regression (SVR). The results indicate that the model based on the fusion feature from near-ground hyperspectral imagery has good estimation effect. In particular, the estimation accuracy of the GBDT model is the best (R(2) = 0.975 for calibration set, R(2) = 0.861 for validation set). These findings demonstrate that the approach proposed in this study improved the estimation performance of LNC in wheat, which could provide technical support in wheat growth monitoring. |
format | Online Article Text |
id | pubmed-7831037 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-78310372021-01-26 Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery Yang, Baohua Ma, Jifeng Yao, Xia Cao, Weixing Zhu, Yan Sensors (Basel) Article Nitrogen is an important indicator for monitoring wheat growth. The rapid development and wide application of non-destructive detection provide many approaches for estimating leaf nitrogen content (LNC) in wheat. Previous studies have shown that better results have been obtained in the estimation of LNC in wheat based on spectral features. However, the lack of automatically extracted features leads to poor universality of the estimation model. Therefore, a feature fusion method for estimating LNC in wheat by combining spectral features with deep features (spatial features) was proposed. The deep features were automatically obtained with a convolutional neural network model based on the PyTorch framework. The spectral features were obtained using spectral information including position features (PFs) and vegetation indices (VIs). Different models based on feature combination for evaluating LNC in wheat were constructed: partial least squares regression (PLS), gradient boosting decision tree (GBDT), and support vector regression (SVR). The results indicate that the model based on the fusion feature from near-ground hyperspectral imagery has good estimation effect. In particular, the estimation accuracy of the GBDT model is the best (R(2) = 0.975 for calibration set, R(2) = 0.861 for validation set). These findings demonstrate that the approach proposed in this study improved the estimation performance of LNC in wheat, which could provide technical support in wheat growth monitoring. MDPI 2021-01-17 /pmc/articles/PMC7831037/ /pubmed/33477350 http://dx.doi.org/10.3390/s21020613 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Baohua Ma, Jifeng Yao, Xia Cao, Weixing Zhu, Yan Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery |
title | Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery |
title_full | Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery |
title_fullStr | Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery |
title_full_unstemmed | Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery |
title_short | Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery |
title_sort | estimation of leaf nitrogen content in wheat based on fusion of spectral features and deep features from near infrared hyperspectral imagery |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831037/ https://www.ncbi.nlm.nih.gov/pubmed/33477350 http://dx.doi.org/10.3390/s21020613 |
work_keys_str_mv | AT yangbaohua estimationofleafnitrogencontentinwheatbasedonfusionofspectralfeaturesanddeepfeaturesfromnearinfraredhyperspectralimagery AT majifeng estimationofleafnitrogencontentinwheatbasedonfusionofspectralfeaturesanddeepfeaturesfromnearinfraredhyperspectralimagery AT yaoxia estimationofleafnitrogencontentinwheatbasedonfusionofspectralfeaturesanddeepfeaturesfromnearinfraredhyperspectralimagery AT caoweixing estimationofleafnitrogencontentinwheatbasedonfusionofspectralfeaturesanddeepfeaturesfromnearinfraredhyperspectralimagery AT zhuyan estimationofleafnitrogencontentinwheatbasedonfusionofspectralfeaturesanddeepfeaturesfromnearinfraredhyperspectralimagery |