Cargando…

MicroRNA-210 Regulates Endoplasmic Reticulum Stress and Apoptosis in Porcine Embryos

SIMPLE SUMMARY: The purpose of this study was to explore the effect of miR-210 on in vitro embryo development, mRNA expression related endoplasmic reticulum (ER) stress. Treatment with a miR-210-inhibitor significantly improved in vitro embryo development and total blastocyst cell number (TCN). Furt...

Descripción completa

Detalles Bibliográficos
Autores principales: Ridlo, Muhammad Rosyid, Kim, Eui Hyun, Kim, Geon A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831048/
https://www.ncbi.nlm.nih.gov/pubmed/33477489
http://dx.doi.org/10.3390/ani11010221
Descripción
Sumario:SIMPLE SUMMARY: The purpose of this study was to explore the effect of miR-210 on in vitro embryo development, mRNA expression related endoplasmic reticulum (ER) stress. Treatment with a miR-210-inhibitor significantly improved in vitro embryo development and total blastocyst cell number (TCN). Furthermore, miR-210-inhibitor treatment downregulated ER stress and apoptosis-related gene expression, while simultaneously improving embryo capacity. In contrast, a miR-210-mimic decreased in vitro embryo development, TCN, upregulated ER stress and apoptosis genes, and concomitantly impaired embryo quality. Therefore, we suggest that miR-210 plays an important role in porcine in vitro embryo development. ABSTRACT: Endoplasmic reticulum (ER) stress can be triggered during in vitro embryo production and is a major obstacle to embryo survival. MicroRNA (miR)-210 is associated with cellular adaptation to cellular stress and inflammation. An experiment was conducted to understand the effects of miR-210 on in vitro embryo development, ER stress, and apoptosis; to achieve this, miR-210 was microinjected into parthenogenetically activated embryos. Our results revealed that miR-210 inhibition significantly enhanced the cleavage rate, blastocyst formation rate, and total cell number (TCN) of blastocysts, and reduced expression levels of XBP1 (p < 0.05). miR-210 inhibition greatly reduced the expression of ER stress-related genes (uXBP1, sXBP1, ATF4, and PTPN1) and Caspase 3 and increased the levels of NANOG and SOX2 (p < 0.05). A miR-210-mimic significantly decreased the cleavage, blastocyst rate, TCN, and expression levels of XBP1 compared with other groups (p < 0.05). The miR-210-mimic impaired the expression levels of uXBP1, sXBP1, ATF4, PTPN1, and Caspase 3 and decreased the expression of NANOG and SOX2 (p < 0.05). In conclusion, miR-210 plays an essential role in porcine in vitro embryo development. Therefore, we suggest that miR-210 inhibition could alleviate ER stress and reduce apoptosis to support the enhancement of in vitro embryo production.