Cargando…
GECO: gene expression clustering optimization app for non-linear data visualization of patterns
BACKGROUND: Due to continued advances in sequencing technology, the limitation in understanding biological systems through an “-omics” lens is no longer the generation of data, but the ability to analyze it. Importantly, much of this rich -omics data is publicly available waiting to be further inves...
Autores principales: | Habowski, A. N., Habowski, T. J., Waterman, M. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831185/ https://www.ncbi.nlm.nih.gov/pubmed/33494695 http://dx.doi.org/10.1186/s12859-020-03951-2 |
Ejemplares similares
-
Los gecos /
por: Millefanti, Massimo
Publicado: (2005) -
Clust: automatic extraction of optimal co-expressed gene clusters from gene expression data
por: Abu-Jamous, Basel, et al.
Publicado: (2018) -
Clustering gene-expression data with repeated measurements
por: Yeung, Ka Yee, et al.
Publicado: (2003) -
Treelink: data integration, clustering and visualization of phylogenetic trees
por: Allende, Christian, et al.
Publicado: (2015) -
VIGLA-M: visual gene expression data analytics
por: Navas-Delgado, Ismael, et al.
Publicado: (2019)