Cargando…

Tiny miRNAs Play a Big Role in the Treatment of Breast Cancer Metastasis

SIMPLE SUMMARY: MicroRNAs (miRNAs) have emerged as important regulators of tumour progression and metastasis in breast cancer. Through a review of multiple studies, this paper has identified the key regulatory roles of oncogenic miRNAs in breast cancer metastasis including the potentiation of angiog...

Descripción completa

Detalles Bibliográficos
Autores principales: Teo, Andrea York Tiang, Xiang, Xiaoqiang, Le, Minh TN, Wong, Andrea Li-Ann, Zeng, Qi, Wang, Lingzhi, Goh, Boon-Cher
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831489/
https://www.ncbi.nlm.nih.gov/pubmed/33477629
http://dx.doi.org/10.3390/cancers13020337
Descripción
Sumario:SIMPLE SUMMARY: MicroRNAs (miRNAs) have emerged as important regulators of tumour progression and metastasis in breast cancer. Through a review of multiple studies, this paper has identified the key regulatory roles of oncogenic miRNAs in breast cancer metastasis including the potentiation of angiogenesis, epithelial-mesenchymal transition, the Warburg effect, and the tumour microenvironment. Several approaches have been studied for selective targeting of breast tumours by miRNAs, ranging from delivery systems such as extracellular vesicles and liposomes to the use of prodrugs and functionally modified vehicle-free miRNAs. While promising, these miRNA-based therapies face challenges including toxicity and immunogenicity, and greater research on their safety profiles must be performed before progressing to clinical trials. ABSTRACT: Distant organ metastases accounts for the majority of breast cancer deaths. Given the prevalence of breast cancer in women, it is imperative to understand the underlying mechanisms of its metastatic progression and identify potential targets for therapy. Since their discovery in 1993, microRNAs (miRNAs) have emerged as important regulators of tumour progression and metastasis in various cancers, playing either oncogenic or tumour suppressor roles. In the following review, we discuss the roles of miRNAs that potentiate four key areas of breast cancer metastasis—angiogenesis, epithelial-mesenchymal transition, the Warburg effect and the tumour microenvironment. We then evaluate the recent developments in miRNA-based therapies in breast cancer, which have shown substantial promise in controlling tumour progression and metastasis. Yet, certain challenges must be overcome before these strategies can be implemented in clinical trials.