Cargando…
A computational approach for the screening of potential antiviral compounds against SARS-CoV-2 protease: Ionic liquid vs herbal and natural compounds
The current scenario across the globe shows unprecedented healthcare and an economic crisis due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Recently, the World Health Organization (WHO) has declared a pandemic stage worldwide because of the high mortality and morbidity rate...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832122/ https://www.ncbi.nlm.nih.gov/pubmed/33518856 http://dx.doi.org/10.1016/j.molliq.2021.115298 |
_version_ | 1783641765495963648 |
---|---|
author | Saraswat, Juhi Singh, Prashant Patel, Rajan |
author_facet | Saraswat, Juhi Singh, Prashant Patel, Rajan |
author_sort | Saraswat, Juhi |
collection | PubMed |
description | The current scenario across the globe shows unprecedented healthcare and an economic crisis due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Recently, the World Health Organization (WHO) has declared a pandemic stage worldwide because of the high mortality and morbidity rate caused by novel infection disease. There have been several clinical trials and identification underway to find a treatment of this novel virus. For the treatment of severe infection involves the blocking of the replication of its CoV-2 protein. Hydroxychloroquine and remdesivir has been used on an emergency basis for its treatment. The uncontrolled infection and increasing death rate underline the emergence to develop the antiviral drug. In our study, the blind docking of various classes of compounds including control antiviral drugs (abacavir, acyclovir, quinoline, hydroxyquinoline), antimicrobial drugs (levofloxacin, amoxicillin, cloxacin, ofloxacin), natural compounds (lycorine, saikosaponins, myricetin, amentaflavone), herbal compounds (silymarin, palmatine, curcumin, eugenin) available in Indian Ayurveda was done. Besides, we have also performed the blind docking of various ionic liquids (ILs) such as pyrrolidinium, piperidinium, pyridinium, imidazolium based ILs against CoV-2 protease as they have recently emerged as a potential antimicrobial agent. Further, the pharmacokinetic properties and cytotoxicity of the compounds were determined computationally. The docking results showed successful binding to the active site or near a crucial site. The present computational approach was found helpful to predict the best possible inhibitor of protease and may result in an effective therapeutic agent against COVID-19. |
format | Online Article Text |
id | pubmed-7832122 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Published by Elsevier B.V. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78321222021-01-26 A computational approach for the screening of potential antiviral compounds against SARS-CoV-2 protease: Ionic liquid vs herbal and natural compounds Saraswat, Juhi Singh, Prashant Patel, Rajan J Mol Liq Article The current scenario across the globe shows unprecedented healthcare and an economic crisis due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Recently, the World Health Organization (WHO) has declared a pandemic stage worldwide because of the high mortality and morbidity rate caused by novel infection disease. There have been several clinical trials and identification underway to find a treatment of this novel virus. For the treatment of severe infection involves the blocking of the replication of its CoV-2 protein. Hydroxychloroquine and remdesivir has been used on an emergency basis for its treatment. The uncontrolled infection and increasing death rate underline the emergence to develop the antiviral drug. In our study, the blind docking of various classes of compounds including control antiviral drugs (abacavir, acyclovir, quinoline, hydroxyquinoline), antimicrobial drugs (levofloxacin, amoxicillin, cloxacin, ofloxacin), natural compounds (lycorine, saikosaponins, myricetin, amentaflavone), herbal compounds (silymarin, palmatine, curcumin, eugenin) available in Indian Ayurveda was done. Besides, we have also performed the blind docking of various ionic liquids (ILs) such as pyrrolidinium, piperidinium, pyridinium, imidazolium based ILs against CoV-2 protease as they have recently emerged as a potential antimicrobial agent. Further, the pharmacokinetic properties and cytotoxicity of the compounds were determined computationally. The docking results showed successful binding to the active site or near a crucial site. The present computational approach was found helpful to predict the best possible inhibitor of protease and may result in an effective therapeutic agent against COVID-19. Published by Elsevier B.V. 2021-03-15 2021-01-07 /pmc/articles/PMC7832122/ /pubmed/33518856 http://dx.doi.org/10.1016/j.molliq.2021.115298 Text en © 2021 Published by Elsevier B.V. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Saraswat, Juhi Singh, Prashant Patel, Rajan A computational approach for the screening of potential antiviral compounds against SARS-CoV-2 protease: Ionic liquid vs herbal and natural compounds |
title | A computational approach for the screening of potential antiviral compounds against SARS-CoV-2 protease: Ionic liquid vs herbal and natural compounds |
title_full | A computational approach for the screening of potential antiviral compounds against SARS-CoV-2 protease: Ionic liquid vs herbal and natural compounds |
title_fullStr | A computational approach for the screening of potential antiviral compounds against SARS-CoV-2 protease: Ionic liquid vs herbal and natural compounds |
title_full_unstemmed | A computational approach for the screening of potential antiviral compounds against SARS-CoV-2 protease: Ionic liquid vs herbal and natural compounds |
title_short | A computational approach for the screening of potential antiviral compounds against SARS-CoV-2 protease: Ionic liquid vs herbal and natural compounds |
title_sort | computational approach for the screening of potential antiviral compounds against sars-cov-2 protease: ionic liquid vs herbal and natural compounds |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832122/ https://www.ncbi.nlm.nih.gov/pubmed/33518856 http://dx.doi.org/10.1016/j.molliq.2021.115298 |
work_keys_str_mv | AT saraswatjuhi acomputationalapproachforthescreeningofpotentialantiviralcompoundsagainstsarscov2proteaseionicliquidvsherbalandnaturalcompounds AT singhprashant acomputationalapproachforthescreeningofpotentialantiviralcompoundsagainstsarscov2proteaseionicliquidvsherbalandnaturalcompounds AT patelrajan acomputationalapproachforthescreeningofpotentialantiviralcompoundsagainstsarscov2proteaseionicliquidvsherbalandnaturalcompounds AT saraswatjuhi computationalapproachforthescreeningofpotentialantiviralcompoundsagainstsarscov2proteaseionicliquidvsherbalandnaturalcompounds AT singhprashant computationalapproachforthescreeningofpotentialantiviralcompoundsagainstsarscov2proteaseionicliquidvsherbalandnaturalcompounds AT patelrajan computationalapproachforthescreeningofpotentialantiviralcompoundsagainstsarscov2proteaseionicliquidvsherbalandnaturalcompounds |