Cargando…
The antiaging property of aqueous extract of Millingtonia hortensis flowers in aging neuron
Cellular senescence is the key mediator of cellular dysfunction before undergoing degenerative disease such as Alzheimer's disease. The aging process was mainly by the overactivation of senescence associated β-galactosidase (SA-β-gal) enzyme before mediated several negative responses, including...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832191/ https://www.ncbi.nlm.nih.gov/pubmed/33532349 http://dx.doi.org/10.4103/japtr.JAPTR_187_20 |
Sumario: | Cellular senescence is the key mediator of cellular dysfunction before undergoing degenerative disease such as Alzheimer's disease. The aging process was mainly by the overactivation of senescence associated β-galactosidase (SA-β-gal) enzyme before mediated several negative responses, including intracellular reactive oxygen species (ROS) production, cellular senescence regulation, and death prior encourage synaptic loss. Thus, in the recent work, we evaluated the in vitro effects of aqueous extract of Millingtonia hortensis L. (MH) from flower in hydrogen peroxide (H(2)O(2))-induced senescence in SK-N-SH cells. Herein, we demonstrated that MH significantly increased cell viability and decreased both of apoptotic cells and ROS production in a dose-dependent manner comparing to aging group (P < 0.01) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and ROS assay. Furthermore, the number of SA-β-gal-positive cells was also reduced in MH treatment (P < 0.01) together with the promotion of Sirt-1 protein. Importantly, MH also promoted the synaptic plasticity by decreased acetylcholinesterase activity and increased synaptophysin expression in aging neurons comparing to aging group (P < 0.01). Hispidulin (the active ingredient in MH) was also revealed the similarly effects to MH. Therefore, we suggested that MH might be beneficially for neurodegenerative disease that caused by aging. |
---|