Cargando…

Infrared spectroscopy technique for quantification of compounds in plant-based medicine and supplement

Quality control of plant-based medicine and supplements must be carried out to ensure uniformity in quality and safety in their use, resulting in the need for effective and accurate analytical methods. Infrared spectroscopy is a method of qualitative and quantitative analysis that is fast, time-savi...

Descripción completa

Detalles Bibliográficos
Autores principales: Junaedi, Effan Cahyati, Lestari, Keri, Muchtaridi, Muchtaridi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832193/
https://www.ncbi.nlm.nih.gov/pubmed/33532347
http://dx.doi.org/10.4103/japtr.JAPTR_96_20
Descripción
Sumario:Quality control of plant-based medicine and supplements must be carried out to ensure uniformity in quality and safety in their use, resulting in the need for effective and accurate analytical methods. Infrared spectroscopy is a method of qualitative and quantitative analysis that is fast, time-saving, cost-effective,accurate, and nondestructive. This method has been applied for quantitative analysis of compounds in complex matrices such as plant-based medicine and supplements supported by chemometrics techniques. The success of infrared spectroscopy applications for quantitative analysis of phytochemicals and adulterants content in plant-based medicine and supplement can happen by several factors. This article highlights the effect of spectral preprocessing and variable selection on quantitative analysis of phytochemical and adulterant in plant-based medicine and supplements using infrared spectroscopy. Literature search was conducted with PubMed, Google Scholar, and Science Direct by selecting quantitative analysis research on plant-based medicines and supplements that utilize spectral preprocessing techniques and variable selection in processing data analysis. The preprocessing spectra and variables selection can affect the accuracy and precision of infrared spectroscopy methods. The variable selection can be done using the wavenumber point technique, the wavenumber interval, or a combination thereof. Variable selection is more commonly used for near-infrared data than for IR data. The optimization of the preprocessing spectra and variables selection technique will be useful in increasing the ability of infrared spectroscopy in predicting compound levels.