Cargando…
Probing antiviral drugs against SARS-CoV-2 through virus-drug association prediction based on the KATZ method
It is urgent to find an effective antiviral drug against SARS-CoV-2. In this study, 96 virus-drug associations (VDAs) from 12 viruses including SARS-CoV-2 and similar viruses and 78 small molecules are selected. Complete genomic sequence similarity of viruses and chemical structure similarity of dru...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832256/ https://www.ncbi.nlm.nih.gov/pubmed/32745502 http://dx.doi.org/10.1016/j.ygeno.2020.07.044 |
Sumario: | It is urgent to find an effective antiviral drug against SARS-CoV-2. In this study, 96 virus-drug associations (VDAs) from 12 viruses including SARS-CoV-2 and similar viruses and 78 small molecules are selected. Complete genomic sequence similarity of viruses and chemical structure similarity of drugs are then computed. A KATZ-based VDA prediction method (VDA-KATZ) is developed to infer possible drugs associated with SARS-CoV-2. VDA-KATZ obtained the best AUCs of 0.8803 when the walking length is 2. The predicted top 3 antiviral drugs against SARS-CoV-2 are remdesivir, oseltamivir, and zanamivir. Molecular docking is conducted between the predicted top 10 drugs and the virus spike protein/human ACE2. The results showed that the above 3 chemical agents have higher molecular binding energies with ACE2. For the first time, we found that zidovudine may be effective clues of treatment of COVID-19. We hope that our predicted drugs could help to prevent the spreading of COVID. |
---|