Cargando…
The Feasibility of a Novel Index From a Wireless Doppler Ultrasound Patch to Detect Decreasing Cardiac Output in Healthy Volunteers
INTRODUCTION: Early hemorrhage is often missed by traditional vital signs because of physiological reserve, especially in the young and healthy. We have developed a novel, wearable, wireless Doppler ultrasound patch that tracks real-time blood velocity in the common carotid artery. MATERIALS AND MET...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832258/ https://www.ncbi.nlm.nih.gov/pubmed/33499507 http://dx.doi.org/10.1093/milmed/usaa248 |
Sumario: | INTRODUCTION: Early hemorrhage is often missed by traditional vital signs because of physiological reserve, especially in the young and healthy. We have developed a novel, wearable, wireless Doppler ultrasound patch that tracks real-time blood velocity in the common carotid artery. MATERIALS AND METHODS: We studied eight healthy volunteers who decreased their cardiac output using a standardized Valsalva maneuver. In all eight, we simultaneously monitored the velocity time integral (VTI) of the common carotid artery (using the ultrasound patch) as well as the descending aorta (using a traditional pulsed wave duplex imaging system); the descending aortic VTI was used as a surrogate for left ventricular stroke volume (SV). Additionally, in a subset of four, we simultaneously measured SV using a noninvasive pulse contour analysis device. RESULTS: From baseline to peak effect of Valsalva, there was a statistically significant fall in descending aortic and common carotid VTI of 37% (P = 0.0005) and 23% (P < 0.0001), respectively. Both values returned to baseline on recovery. Additionally, a novel index from the carotid ultrasound patch (i.e., the heart rate divided by the carotid artery VTI) detected a 10% fall in aortic VTI with high sensitivity and specificity (100% and 100%, respectively); this novel index also accurately detected a 10% decrease in SV as measured by the noninvasive SV monitor. The mean arterial pressure, measured by the noninvasive pulse contour device, did not correctly detect the fall in SV. CONCLUSION: In summary, a novel index from a wireless Doppler ultrasound patch may be more sensitive and specific for detecting decreased cardiac output than standard vital signs in healthy volunteers. |
---|