Cargando…
Material Model Development of Magnesium Alloy and Its Strength Evaluation
A new material model of magnesium alloys, combining both Hill’48 yield function and Cazacu’06 yield function, was developed and programmed into LS-DYNA using user subroutine, in which both slip dominant and twinning/untwinning dominant hardening phenomena were included. First, a cyclic load test was...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832298/ https://www.ncbi.nlm.nih.gov/pubmed/33477784 http://dx.doi.org/10.3390/ma14020454 |
Sumario: | A new material model of magnesium alloys, combining both Hill’48 yield function and Cazacu’06 yield function, was developed and programmed into LS-DYNA using user subroutine, in which both slip dominant and twinning/untwinning dominant hardening phenomena were included. First, a cyclic load test was performed, and its finite element analysis was carried out to verify the new material model. Then, the deformation behaviors of the magnesium crash box subjected to the compressive impact loading were investigated using the developed material model. Compared with the experimental results, the new material model accurately predicted the deformation characteristics of magnesium alloy parts. Additionally, the effect of the thickness distribution, initial deflection and contact friction coefficient in simulation models on deformation behaviors were investigated using this validated material model. |
---|