Cargando…
Variationally Inferred Sampling through a Refined Bound
In this work, a framework to boost the efficiency of Bayesian inference in probabilistic models is introduced by embedding a Markov chain sampler within a variational posterior approximation. We call this framework “refined variational approximation”. Its strengths are its ease of implementation and...
Autores principales: | Gallego, Víctor, Ríos Insua, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832329/ https://www.ncbi.nlm.nih.gov/pubmed/33477766 http://dx.doi.org/10.3390/e23010123 |
Ejemplares similares
-
Sampling the Variational Posterior with Local Refinement
por: Havasi, Marton, et al.
Publicado: (2021) -
Variational Inference via Rényi Bound Optimization and Multiple-Source Adaptation †
por: Zalman (Oshri), Dana, et al.
Publicado: (2023) -
Iterative Multiple Bounding-Box Refinements for Visual Tracking
por: Cruciata, Giorgio, et al.
Publicado: (2022) -
AI in drug development: a multidisciplinary perspective
por: Gallego, Víctor, et al.
Publicado: (2021) -
Deconvolution and phylogeny inference of structural variations in tumor genomic samples
por: Eaton, Jesse, et al.
Publicado: (2018)