Cargando…
Optimal resource allocation for multiclass services in peer-to-peer networks via successive approximation
Peer-to-peer (P2P) networks support a wide variety of network services including elastic services such as file-sharing and downloading and inelastic services such as real-time multiparty conferencing. Each peer who acquires a service will receive a certain level of satisfaction if the service is pro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832444/ http://dx.doi.org/10.1007/s12351-021-00622-9 |
Sumario: | Peer-to-peer (P2P) networks support a wide variety of network services including elastic services such as file-sharing and downloading and inelastic services such as real-time multiparty conferencing. Each peer who acquires a service will receive a certain level of satisfaction if the service is provided with a certain amount of resource. The utility function is used to describe the satisfaction of a peer when acquiring a service. In this paper we consider optimal resource allocation for elastic and inelastic services and formulate a utility maximization model which is an intractable and difficult non-convex optimization problem. In order to resolve it, we apply the successive approximation method and approximate the non-convex problem to a serial of equivalent convex optimization problems. Then we develop a gradient-based resource allocation scheme to achieve the optimal solutions of the approximations. After a serial of approximations, the proposed scheme can finally converge to an optimal solution of the primal utility maximization model for resource allocation which satisfies the Karush–Kuhn–Tucker conditions. |
---|