Cargando…
A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19
COVID-19 is a novel coronavirus affecting all the world since December last year. Up to date, the spread of the outbreak continues to complicate our lives, and therefore, several research efforts from many scientific areas are proposed. Among them, mathematical models are an excellent way to underst...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832492/ https://www.ncbi.nlm.nih.gov/pubmed/33519121 http://dx.doi.org/10.1016/j.chaos.2020.110632 |
Sumario: | COVID-19 is a novel coronavirus affecting all the world since December last year. Up to date, the spread of the outbreak continues to complicate our lives, and therefore, several research efforts from many scientific areas are proposed. Among them, mathematical models are an excellent way to understand and predict the epidemic outbreaks evolution to some extent. Due to the COVID-19 may be modeled as a non-Markovian process that follows power-law scaling features, we present a fractional-order SIRD (Susceptible-Infected-Recovered-Dead) model based on the Caputo derivative for incorporating the memory effects (long and short) in the outbreak progress. Additionally, we analyze the experimental time series of 23 countries using fractal formalism. Like previous works, we identify that the COVID-19 evolution shows various power-law exponents (no just a single one) and share some universality among geographical regions. Hence, we incorporate numerous memory indexes in the proposed model, i.e., distinct fractional-orders defined by a time-dependent function that permits us to set specific memory contributions during the evolution. This allows controlling the memory effects of more early states, e.g., before and after a quarantine decree, which could be less relevant than the contribution of more recent ones on the current state of the SIRD system. We also prove our model with Italy’s real data from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. |
---|