Cargando…
Moving the Lab into the Mountains: A Pilot Study of Human Activity Recognition in Unstructured Environments
Goal: To develop and validate a field-based data collection and assessment method for human activity recognition in the mountains with variations in terrain and fatigue using a single accelerometer and a deep learning model. Methods: The protocol generated an unsupervised labelled dataset of various...
Autores principales: | Russell, Brian, McDaid, Andrew, Toscano, William, Hume, Patria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832872/ https://www.ncbi.nlm.nih.gov/pubmed/33477828 http://dx.doi.org/10.3390/s21020654 |
Ejemplares similares
-
Predicting Fatigue in Long Duration Mountain Events with a Single Sensor and Deep Learning Model
por: Russell, Brian, et al.
Publicado: (2021) -
Sensing, intelligence, motion: how robots and humans move in an unstructured world
por: Lumelsky, Vladimir J
Publicado: (2006) -
Virtual Normalization of Physical Impairment: A Pilot Study to Evaluate Motor Learning in Presence of Physical Impairment
por: Jarrett, Christopher, et al.
Publicado: (2017) -
Autonomous Reading of Gauges in Unstructured Environments
por: Milana, Edoardo, et al.
Publicado: (2022) -
Demography_Lab, an educational application to evaluate population growth: Unstructured and matrix models
por: Arrontes, Julio
Publicado: (2021)