Cargando…

Laser Cut Interruption Detection from Small Images by Using Convolutional Neural Network

In this publication, we use a small convolutional neural network to detect cut interruptions during laser cutting from single images of a high-speed camera. A camera takes images without additional illumination at a resolution of 32 × 64 pixels from cutting steel sheets of varying thicknesses with d...

Descripción completa

Detalles Bibliográficos
Autores principales: Adelmann, Benedikt, Schleier, Max, Hellmann, Ralf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832876/
https://www.ncbi.nlm.nih.gov/pubmed/33477838
http://dx.doi.org/10.3390/s21020655
Descripción
Sumario:In this publication, we use a small convolutional neural network to detect cut interruptions during laser cutting from single images of a high-speed camera. A camera takes images without additional illumination at a resolution of 32 × 64 pixels from cutting steel sheets of varying thicknesses with different laser parameter combinations and classifies them into cuts and cut interruptions. After a short learning period of five epochs on a certain sheet thickness, the images are classified with a low error rate of 0.05%. The use of color images reveals slight advantages with lower error rates over greyscale images, since, during cut interruptions, the image color changes towards blue. A training set on all sheet thicknesses in one network results in tests error rates below 0.1%. This low error rate and the short calculation time of 120 µs on a standard CPU makes the system industrially applicable.