Cargando…
Stress-Based FEM in the Problem of Bending of Euler–Bernoulli and Timoshenko Beams Resting on Elastic Foundation
The stress-based finite element method is proposed to solve the static bending problem for the Euler–Bernoulli and Timoshenko models of an elastic beam. Two types of elements—with five and six degrees of freedom—are proposed. The elaborated elements reproduce the exact solution in the case of the pi...
Autores principales: | Więckowski, Zdzisław, Świątkiewicz, Paulina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832909/ https://www.ncbi.nlm.nih.gov/pubmed/33477876 http://dx.doi.org/10.3390/ma14020460 |
Ejemplares similares
-
Dynamics of Space-Fractional Euler–Bernoulli and Timoshenko Beams
por: Stempin, Paulina, et al.
Publicado: (2021) -
Elastostatics of Bernoulli–Euler Beams Resting on Displacement-Driven Nonlocal Foundation
por: Vaccaro, Marzia Sara, et al.
Publicado: (2021) -
Comparison of the Natural Vibration Frequencies of Timoshenko and Bernoulli Periodic Beams
por: Domagalski, Łukasz
Publicado: (2021) -
Zeros of Bernoulli, generalized Bernoulli, and Euler polynomials
por: Dilcher, Karl
Publicado: (1988) -
Complete tangent stiffness matrix considering higher-order terms in the strain tensor and large rotations for a Euler Bernoulli - Timoshenko space beam-column element
por: Rodrigues, Marcos Antonio Campos, et al.
Publicado: (2021)