Cargando…
A novel screening strategy of anti-SARS-CoV-2 drugs via blocking interaction between Spike RBD and ACE2
Corona virus disease 2019 has spread worldwide, and appropriate drug design and screening activities are required to overcome the associated pandemic. Using computational simulation, blockade mechanism of SARS-CoV-2 spike receptor binding domain (S RBD) and human angiotensin converting enzyme 2 (hAC...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832953/ https://www.ncbi.nlm.nih.gov/pubmed/33401173 http://dx.doi.org/10.1016/j.envint.2020.106361 |
Sumario: | Corona virus disease 2019 has spread worldwide, and appropriate drug design and screening activities are required to overcome the associated pandemic. Using computational simulation, blockade mechanism of SARS-CoV-2 spike receptor binding domain (S RBD) and human angiotensin converting enzyme 2 (hACE2) was clarified based on interactions between RBD and hesperidin. Interactions between anti-SARS-CoV-2 drugs and therapy were investigated based on the binding energy and druggability of the compounds, and they exhibited negative correlations; the compounds were classified into eight common types of structures with highest activity. An anti-SARS-CoV-2 drug screening strategy based on blocking S RBD/hACE2 binding was established according to the first key change (interactions between hesperidin and S RBD/hACE2) vs the second key change (interactions between anti-SARS-CoV-2 drugs and RBD/hACE2) trends. Our findings provide valuable information on the mechanism of RBD/hACE2 binding and on the associated screening strategies for anti-SARS-CoV-2 drugs based on blocking mechanisms of pockets. |
---|