Cargando…

Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions

Ionizing radiation is one of the main factors limiting the survival of microorganisms in extraterrestrial conditions. The survivability of microorganisms under irradiation depends significantly on the conditions, in which the irradiation occurs. In particular, temperature, pressure, oxygen and water...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheptsov, Vladimir S., Belov, Andrey A., Vorobyova, Elena A., Pavlov, Anatoli K., Lomasov, Vladimir N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833375/
https://www.ncbi.nlm.nih.gov/pubmed/33477915
http://dx.doi.org/10.3390/microorganisms9010198
_version_ 1783642050700247040
author Cheptsov, Vladimir S.
Belov, Andrey A.
Vorobyova, Elena A.
Pavlov, Anatoli K.
Lomasov, Vladimir N.
author_facet Cheptsov, Vladimir S.
Belov, Andrey A.
Vorobyova, Elena A.
Pavlov, Anatoli K.
Lomasov, Vladimir N.
author_sort Cheptsov, Vladimir S.
collection PubMed
description Ionizing radiation is one of the main factors limiting the survival of microorganisms in extraterrestrial conditions. The survivability of microorganisms under irradiation depends significantly on the conditions, in which the irradiation occurs. In particular, temperature, pressure, oxygen and water concentrations are of great influence. However, the influence of factors such as the radiation intensity (in low-temperature conditions) and the type of mineral matrix, in which microorganisms are located, has been practically unstudied. It has been shown that the radioresistance of bacteria can increase after their exposure to sublethal doses and subsequent repair of damage under favorable conditions, however, such studies are also few and the influence of other factors of extraterrestrial space (temperature, pressure) was not studied in them. The viability of bacteria Arthrobacter polychromogenes, Kocuria rosea and Xanthomonas sp. after irradiation with gamma radiation at a dose of 1 kGy under conditions of low pressure (1 Torr) and low temperature (−50 °C) at different radiation intensities (4 vs. 0.8 kGy/h) with immobilization of bacteria on various mineral matrices (montmorillonite vs. analogue of lunar dust) has been studied. Native, previously non-irradiated strains, and strains that were previously irradiated with gamma radiation and subjected to 10 passages of cultivation on solid media were irradiated. The number of survived cells was determined by culturing on a solid medium. It has been shown that the radioresistance of bacteria depends significantly on the type of mineral matrix, on which they are immobilized, wherein montmorillonite contributes to an increased survivability in comparison with a silicate matrix. Survivability of the studied bacteria was found to increase with decreasing radiation intensity, despite the impossibility of active reparation processes under experimental conditions. Considering the low intensity of radiation on various space objects in comparison with radiobiological experiments, this suggests a longer preservation of the viable microorganisms outside the Earth than is commonly believed. An increase in bacterial radioresistance was revealed even after one cycle of irradiation of the strains and their subsequent cultivation under favourable conditions. This indicates the possibility of hypothetical microorganisms on Mars increasing their radioresistance.
format Online
Article
Text
id pubmed-7833375
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-78333752021-01-26 Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions Cheptsov, Vladimir S. Belov, Andrey A. Vorobyova, Elena A. Pavlov, Anatoli K. Lomasov, Vladimir N. Microorganisms Communication Ionizing radiation is one of the main factors limiting the survival of microorganisms in extraterrestrial conditions. The survivability of microorganisms under irradiation depends significantly on the conditions, in which the irradiation occurs. In particular, temperature, pressure, oxygen and water concentrations are of great influence. However, the influence of factors such as the radiation intensity (in low-temperature conditions) and the type of mineral matrix, in which microorganisms are located, has been practically unstudied. It has been shown that the radioresistance of bacteria can increase after their exposure to sublethal doses and subsequent repair of damage under favorable conditions, however, such studies are also few and the influence of other factors of extraterrestrial space (temperature, pressure) was not studied in them. The viability of bacteria Arthrobacter polychromogenes, Kocuria rosea and Xanthomonas sp. after irradiation with gamma radiation at a dose of 1 kGy under conditions of low pressure (1 Torr) and low temperature (−50 °C) at different radiation intensities (4 vs. 0.8 kGy/h) with immobilization of bacteria on various mineral matrices (montmorillonite vs. analogue of lunar dust) has been studied. Native, previously non-irradiated strains, and strains that were previously irradiated with gamma radiation and subjected to 10 passages of cultivation on solid media were irradiated. The number of survived cells was determined by culturing on a solid medium. It has been shown that the radioresistance of bacteria depends significantly on the type of mineral matrix, on which they are immobilized, wherein montmorillonite contributes to an increased survivability in comparison with a silicate matrix. Survivability of the studied bacteria was found to increase with decreasing radiation intensity, despite the impossibility of active reparation processes under experimental conditions. Considering the low intensity of radiation on various space objects in comparison with radiobiological experiments, this suggests a longer preservation of the viable microorganisms outside the Earth than is commonly believed. An increase in bacterial radioresistance was revealed even after one cycle of irradiation of the strains and their subsequent cultivation under favourable conditions. This indicates the possibility of hypothetical microorganisms on Mars increasing their radioresistance. MDPI 2021-01-19 /pmc/articles/PMC7833375/ /pubmed/33477915 http://dx.doi.org/10.3390/microorganisms9010198 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Communication
Cheptsov, Vladimir S.
Belov, Andrey A.
Vorobyova, Elena A.
Pavlov, Anatoli K.
Lomasov, Vladimir N.
Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions
title Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions
title_full Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions
title_fullStr Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions
title_full_unstemmed Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions
title_short Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions
title_sort effects of radiation intensity, mineral matrix, and pre-irradiation on the bacterial resistance to gamma irradiation under low temperature conditions
topic Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833375/
https://www.ncbi.nlm.nih.gov/pubmed/33477915
http://dx.doi.org/10.3390/microorganisms9010198
work_keys_str_mv AT cheptsovvladimirs effectsofradiationintensitymineralmatrixandpreirradiationonthebacterialresistancetogammairradiationunderlowtemperatureconditions
AT belovandreya effectsofradiationintensitymineralmatrixandpreirradiationonthebacterialresistancetogammairradiationunderlowtemperatureconditions
AT vorobyovaelenaa effectsofradiationintensitymineralmatrixandpreirradiationonthebacterialresistancetogammairradiationunderlowtemperatureconditions
AT pavlovanatolik effectsofradiationintensitymineralmatrixandpreirradiationonthebacterialresistancetogammairradiationunderlowtemperatureconditions
AT lomasovvladimirn effectsofradiationintensitymineralmatrixandpreirradiationonthebacterialresistancetogammairradiationunderlowtemperatureconditions