Cargando…
Predicting of Sentinel Lymph Node Status in Breast Cancer Patients with Clinically Negative Nodes: A Validation Study
SIMPLE SUMMARY: Sentinel lymph node biopsy procedure is time consuming and expensive, but it is still the intra-operative exam capable of the best performance. However, sometimes, surgery is achieved without a clear diagnosis, so clinical decision support systems developed with artificial intelligen...
Autores principales: | Fanizzi, Annarita, Pomarico, Domenico, Paradiso, Angelo, Bove, Samantha, Diotaiuti, Sergio, Didonna, Vittorio, Giotta, Francesco, La Forgia, Daniele, Latorre, Agnese, Pastena, Maria Irene, Tamborra, Pasquale, Zito, Alfredo, Lorusso, Vito, Massafra, Raffaella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833376/ https://www.ncbi.nlm.nih.gov/pubmed/33477893 http://dx.doi.org/10.3390/cancers13020352 |
Ejemplares similares
-
Robustness Evaluation of a Deep Learning Model on Sagittal and Axial Breast DCE-MRIs to Predict Pathological Complete Response to Neoadjuvant Chemotherapy
por: Massafra, Raffaella, et al.
Publicado: (2022) -
Machine learning survival models trained on clinical data to identify high risk patients with hormone responsive HER2 negative breast cancer
por: Fanizzi, Annarita, et al.
Publicado: (2023) -
A machine learning ensemble approach for 5- and 10-year breast cancer invasive disease event classification
por: Massafra, Raffaella, et al.
Publicado: (2022) -
A ultrasound-based radiomic approach to predict the nodal status in clinically negative breast cancer patients
por: Bove, Samantha, et al.
Publicado: (2022) -
Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
por: Massafra, Raffaella, et al.
Publicado: (2023)