Cargando…
Identification of Lysine Acetylation Sites on MERS-CoV Replicase pp1ab
MERS is a life-threatening disease and MERS-CoV has the potential to cause the next pandemic. Protein acetylation is known to play a crucial role in host response to viral infection. Acetylation of viral proteins encoded by other RNA viruses have been reported to affect viral replication. It is ther...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833549/ https://www.ncbi.nlm.nih.gov/pubmed/32424026 http://dx.doi.org/10.1074/mcp.RA119.001897 |
_version_ | 1783642089768091648 |
---|---|
author | Zhu, Lin Fung, Sin-Yee Xie, Guangshan Wong, Lok-Yin Roy Jin, Dong-Yan Cai, Zongwei |
author_facet | Zhu, Lin Fung, Sin-Yee Xie, Guangshan Wong, Lok-Yin Roy Jin, Dong-Yan Cai, Zongwei |
author_sort | Zhu, Lin |
collection | PubMed |
description | MERS is a life-threatening disease and MERS-CoV has the potential to cause the next pandemic. Protein acetylation is known to play a crucial role in host response to viral infection. Acetylation of viral proteins encoded by other RNA viruses have been reported to affect viral replication. It is therefore of interest to see whether MERS-CoV proteins are also acetylated. Viral proteins obtained from infected cells were trypsin-digested into peptides. Acetylated peptides were enriched by immunoprecipitation and subject to nano-LC-Orbitrap analysis. Bioinformatic analysis was performed to assess the conservation level of identified acetylation sites and to predict the upstream regulatory factors. A total of 12 acetylation sites were identified from 7 peptides, which all belong to the replicase polyprotein pp1ab. All identified acetylation sites were found to be highly conserved across MERS-CoV sequences in NCBI database. Upstream factors, including deacetylases of the SIRT1 and HDAC families as well as acetyltransferases of the TIP60 family, were predicted to be responsible for regulating the acetylation events identified. Western blotting confirms that acetylation events indeed occur on pp1ab protein by expressing NSP4 in HEK293 cells. Acetylation events on MERS-CoV viral protein pp1ab were identified for the first time, which indicate that MERS-CoV might use the host acetylation machinery to regulate its enzyme activity and to achieve optimal replication. Upstream factors were predicted, which might facilitate further analysis of the regulatory mechanism of MERS-CoV replication. |
format | Online Article Text |
id | pubmed-7833549 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-78335492021-01-26 Identification of Lysine Acetylation Sites on MERS-CoV Replicase pp1ab Zhu, Lin Fung, Sin-Yee Xie, Guangshan Wong, Lok-Yin Roy Jin, Dong-Yan Cai, Zongwei Mol Cell Proteomics Research MERS is a life-threatening disease and MERS-CoV has the potential to cause the next pandemic. Protein acetylation is known to play a crucial role in host response to viral infection. Acetylation of viral proteins encoded by other RNA viruses have been reported to affect viral replication. It is therefore of interest to see whether MERS-CoV proteins are also acetylated. Viral proteins obtained from infected cells were trypsin-digested into peptides. Acetylated peptides were enriched by immunoprecipitation and subject to nano-LC-Orbitrap analysis. Bioinformatic analysis was performed to assess the conservation level of identified acetylation sites and to predict the upstream regulatory factors. A total of 12 acetylation sites were identified from 7 peptides, which all belong to the replicase polyprotein pp1ab. All identified acetylation sites were found to be highly conserved across MERS-CoV sequences in NCBI database. Upstream factors, including deacetylases of the SIRT1 and HDAC families as well as acetyltransferases of the TIP60 family, were predicted to be responsible for regulating the acetylation events identified. Western blotting confirms that acetylation events indeed occur on pp1ab protein by expressing NSP4 in HEK293 cells. Acetylation events on MERS-CoV viral protein pp1ab were identified for the first time, which indicate that MERS-CoV might use the host acetylation machinery to regulate its enzyme activity and to achieve optimal replication. Upstream factors were predicted, which might facilitate further analysis of the regulatory mechanism of MERS-CoV replication. American Society for Biochemistry and Molecular Biology 2020-11-23 /pmc/articles/PMC7833549/ /pubmed/32424026 http://dx.doi.org/10.1074/mcp.RA119.001897 Text en © 2020 © 2020 Zhu et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Zhu, Lin Fung, Sin-Yee Xie, Guangshan Wong, Lok-Yin Roy Jin, Dong-Yan Cai, Zongwei Identification of Lysine Acetylation Sites on MERS-CoV Replicase pp1ab |
title | Identification of Lysine Acetylation Sites on MERS-CoV Replicase pp1ab |
title_full | Identification of Lysine Acetylation Sites on MERS-CoV Replicase pp1ab |
title_fullStr | Identification of Lysine Acetylation Sites on MERS-CoV Replicase pp1ab |
title_full_unstemmed | Identification of Lysine Acetylation Sites on MERS-CoV Replicase pp1ab |
title_short | Identification of Lysine Acetylation Sites on MERS-CoV Replicase pp1ab |
title_sort | identification of lysine acetylation sites on mers-cov replicase pp1ab |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833549/ https://www.ncbi.nlm.nih.gov/pubmed/32424026 http://dx.doi.org/10.1074/mcp.RA119.001897 |
work_keys_str_mv | AT zhulin identificationoflysineacetylationsitesonmerscovreplicasepp1ab AT fungsinyee identificationoflysineacetylationsitesonmerscovreplicasepp1ab AT xieguangshan identificationoflysineacetylationsitesonmerscovreplicasepp1ab AT wonglokyinroy identificationoflysineacetylationsitesonmerscovreplicasepp1ab AT jindongyan identificationoflysineacetylationsitesonmerscovreplicasepp1ab AT caizongwei identificationoflysineacetylationsitesonmerscovreplicasepp1ab |