Cargando…
Single-step, wash-free digital immunoassay for rapid quantitative analysis of serological antibody against SARS-CoV-2 by photonic resonator absorption microscopy
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the cause of Coronavirus Disease 2019 (COVID-19), poses extraordinary threats and complex challenges to global public health. Quantitative measurement of SARS-CoV-2 antibody titer plays an important role in understanding the patient-to-pa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833826/ https://www.ncbi.nlm.nih.gov/pubmed/33592744 http://dx.doi.org/10.1016/j.talanta.2020.122004 |
Sumario: | Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the cause of Coronavirus Disease 2019 (COVID-19), poses extraordinary threats and complex challenges to global public health. Quantitative measurement of SARS-CoV-2 antibody titer plays an important role in understanding the patient-to-patient variability of immune response, assessing the efficacy of vaccines, and identifying donors for blood transfusion therapy. There is an urgent and ever-increasing demand for serological COVID-19 antibody tests that are highly sensitive, quantitative, rapid, simple, minimally invasive, and inexpensive. In this work, we developed a single-step, wash-free immunoassay for rapid and highly sensitive quantitative analysis of serological human IgG against SARS-CoV-2 which requires only a single droplet of serum. By simply incubating 4 μL human serum samples with antibody-functionalized gold nanoparticles, a photonic crystal optical biosensor coated with the recombinant spike protein serves as a sensing platform for the formation of sandwich immunocomplex through specific antigen–antibody interactions, upon which the detected IgG molecules can be counted with digital precision. We demonstrated a single-step 15-min assay capable of detecting as low as 100 pg mL(−1) human COVID-19 IgG in serum samples. The calculated limit of detecting (LOD) and limit of quantification (LOQ) is 26.7 ± 7.7 and 32.0 ± 8.9 pg mL(−1), respectively. This work represents the first utilization of the Activate Capture + Digital Counting (AC + DC)-based immunoassay for rapid and quantitative analysis of serological COVID-19 antibody, demonstrating a route toward point-of-care testing, using a portable detection instrument. On the basis of the sandwich immunoassay principle, the biosensing platform can be extended for the multiplexed detection of antigens, additional IgGs, cytokines, and other protein biomarkers. |
---|