Cargando…
Multi-window back-projection residual networks for reconstructing COVID-19 CT super-resolution images
BACKGROUND AND OBJECTIVE: With the increasing problem of coronavirus disease 2019 (COVID-19) in the world, improving the image resolution of COVID-19 computed tomography (CT) becomes a very important task. At present, single-image super-resolution (SISR) models based on convolutional neural networks...
Autores principales: | Qiu, Defu, Cheng, Yuhu, Wang, Xuesong, Zhang, Xiaoqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834190/ https://www.ncbi.nlm.nih.gov/pubmed/33454574 http://dx.doi.org/10.1016/j.cmpb.2021.105934 |
Ejemplares similares
-
Progressive U-Net residual network for computed tomography images super-resolution in the screening of COVID-19
por: Qiu, Defu, et al.
Publicado: (2021) -
Progressive back-projection network for COVID-CT super-resolution
por: Song, Zhaoyang, et al.
Publicado: (2021) -
Cardiac Magnetic Resonance Images Superresolution via Multichannel Residual Attention Networks
por: Qiu, Defu, et al.
Publicado: (2021) -
Super resolution reconstruction of CT images based on multi-scale attention mechanism
por: Yin, Jian, et al.
Publicado: (2023) -
Double paths network with residual information distillation for improving lung CT image super resolution
por: Chen, Yihan, et al.
Publicado: (2022)