Cargando…
Genome composition and genetic characterization of SARS-CoV-2
SARS-CoV-2 is a type of Betacoronaviruses responsible for COVID-19 pandemic disease, with more than 1.745 million fatalities globally as of December-2020. Genetically, it is considered the second largest genome of all RNA viruses with a 5′ cap and 3′ poly-A tail. Phylogenetic analyses of coronavirus...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834485/ https://www.ncbi.nlm.nih.gov/pubmed/33519278 http://dx.doi.org/10.1016/j.sjbs.2020.12.053 |
_version_ | 1783642291434422272 |
---|---|
author | Al-Qaaneh, Ayman M. Alshammari, Thamer Aldahhan, Razan Aldossary, Hanan Alkhalifah, Zahra Abduljaleel Borgio, J. Francis |
author_facet | Al-Qaaneh, Ayman M. Alshammari, Thamer Aldahhan, Razan Aldossary, Hanan Alkhalifah, Zahra Abduljaleel Borgio, J. Francis |
author_sort | Al-Qaaneh, Ayman M. |
collection | PubMed |
description | SARS-CoV-2 is a type of Betacoronaviruses responsible for COVID-19 pandemic disease, with more than 1.745 million fatalities globally as of December-2020. Genetically, it is considered the second largest genome of all RNA viruses with a 5′ cap and 3′ poly-A tail. Phylogenetic analyses of coronaviruses reveal that SARS-CoV-2 is genetically closely related to the Bat-SARS Like-Corona virus (Bat-SL-Cov) with 96% whole-genome identity. SARS-CoV-2 genome consists of 15 ORFs coded into 29 proteins. At the 5′ terminal of the genome, we have ORF1ab and ORF1a, which encode the 1ab and 1a polypeptides that are proteolytically cleaved into 16 different nonstructural proteins (NSPs). The 3′ terminal of the genome represents four structural (spike, envelope, matrix, and nucleocapsid) and nine accessory (3a, 3b, 6, 7a, 7b, 8b, 9a, 9b, and orf10) proteins. As the number of COVID-19 patients increases dramatically worldwide, there is an urgent need to find a quick and sensitive diagnostic tool for controlling the outbreak of SARS-CoV-2 in the community. Today, molecular testing methods utilizing viral genetic material (e.g., PCR) represent the crucial diagnostic tool for the SARS-CoV-2 virus despite its low sensitivity in the early stage of viral infection. This review summarizes the genome composition and genetic characterization of the SARS-CoV-2. |
format | Online Article Text |
id | pubmed-7834485 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-78344852021-01-26 Genome composition and genetic characterization of SARS-CoV-2 Al-Qaaneh, Ayman M. Alshammari, Thamer Aldahhan, Razan Aldossary, Hanan Alkhalifah, Zahra Abduljaleel Borgio, J. Francis Saudi J Biol Sci Review SARS-CoV-2 is a type of Betacoronaviruses responsible for COVID-19 pandemic disease, with more than 1.745 million fatalities globally as of December-2020. Genetically, it is considered the second largest genome of all RNA viruses with a 5′ cap and 3′ poly-A tail. Phylogenetic analyses of coronaviruses reveal that SARS-CoV-2 is genetically closely related to the Bat-SARS Like-Corona virus (Bat-SL-Cov) with 96% whole-genome identity. SARS-CoV-2 genome consists of 15 ORFs coded into 29 proteins. At the 5′ terminal of the genome, we have ORF1ab and ORF1a, which encode the 1ab and 1a polypeptides that are proteolytically cleaved into 16 different nonstructural proteins (NSPs). The 3′ terminal of the genome represents four structural (spike, envelope, matrix, and nucleocapsid) and nine accessory (3a, 3b, 6, 7a, 7b, 8b, 9a, 9b, and orf10) proteins. As the number of COVID-19 patients increases dramatically worldwide, there is an urgent need to find a quick and sensitive diagnostic tool for controlling the outbreak of SARS-CoV-2 in the community. Today, molecular testing methods utilizing viral genetic material (e.g., PCR) represent the crucial diagnostic tool for the SARS-CoV-2 virus despite its low sensitivity in the early stage of viral infection. This review summarizes the genome composition and genetic characterization of the SARS-CoV-2. Elsevier 2021-03 2021-01-06 /pmc/articles/PMC7834485/ /pubmed/33519278 http://dx.doi.org/10.1016/j.sjbs.2020.12.053 Text en © 2021 The Author(s) |
spellingShingle | Review Al-Qaaneh, Ayman M. Alshammari, Thamer Aldahhan, Razan Aldossary, Hanan Alkhalifah, Zahra Abduljaleel Borgio, J. Francis Genome composition and genetic characterization of SARS-CoV-2 |
title | Genome composition and genetic characterization of SARS-CoV-2 |
title_full | Genome composition and genetic characterization of SARS-CoV-2 |
title_fullStr | Genome composition and genetic characterization of SARS-CoV-2 |
title_full_unstemmed | Genome composition and genetic characterization of SARS-CoV-2 |
title_short | Genome composition and genetic characterization of SARS-CoV-2 |
title_sort | genome composition and genetic characterization of sars-cov-2 |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834485/ https://www.ncbi.nlm.nih.gov/pubmed/33519278 http://dx.doi.org/10.1016/j.sjbs.2020.12.053 |
work_keys_str_mv | AT alqaanehaymanm genomecompositionandgeneticcharacterizationofsarscov2 AT alshammarithamer genomecompositionandgeneticcharacterizationofsarscov2 AT aldahhanrazan genomecompositionandgeneticcharacterizationofsarscov2 AT aldossaryhanan genomecompositionandgeneticcharacterizationofsarscov2 AT alkhalifahzahraabduljaleel genomecompositionandgeneticcharacterizationofsarscov2 AT borgiojfrancis genomecompositionandgeneticcharacterizationofsarscov2 |