Cargando…
Toward Using Twitter for Tracking COVID-19: A Natural Language Processing Pipeline and Exploratory Data Set
BACKGROUND: In the United States, the rapidly evolving COVID-19 outbreak, the shortage of available testing, and the delay of test results present challenges for actively monitoring its spread based on testing alone. OBJECTIVE: The objective of this study was to develop, evaluate, and deploy an auto...
Autores principales: | Klein, Ari Z, Magge, Arjun, O'Connor, Karen, Flores Amaro, Jesus Ivan, Weissenbacher, Davy, Gonzalez Hernandez, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834613/ https://www.ncbi.nlm.nih.gov/pubmed/33449904 http://dx.doi.org/10.2196/25314 |
Ejemplares similares
-
A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter
por: Klein, Ari Z., et al.
Publicado: (2020) -
Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK
por: Golder, S, et al.
Publicado: (2020) -
A chronological and geographical analysis of personal reports of COVID-19 on
Twitter from the UK
por: Golder, Su, et al.
Publicado: (2022) -
Automatically Identifying Twitter Users for Interventions to Support Dementia Family Caregivers: Annotated Data Set and Benchmark Classification Models
por: Klein, Ari Z, et al.
Publicado: (2022) -
DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter
por: Magge, Arjun, et al.
Publicado: (2021)