Cargando…
Causal inference methods for small non-randomized studies: Methods and an application in COVID-19
The usual development cycles are too slow for the development of vaccines, diagnostics and treatments in pandemics such as the ongoing SARS-CoV-2 pandemic. Given the pressure in such a situation, there is a risk that findings of early clinical trials are overinterpreted despite their limitations in...
Autores principales: | Friedrich, Sarah, Friede, Tim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834813/ https://www.ncbi.nlm.nih.gov/pubmed/33188930 http://dx.doi.org/10.1016/j.cct.2020.106213 |
Ejemplares similares
-
Application of Causal Inference Methods to Pooled Longitudinal Non- Randomized Studies: A Methodological Systematic Review
por: Hufstedler, Heather, et al.
Publicado: (2023) -
Strengthening Causal Inference in Exposomics Research: Application of Genetic Data and Methods
por: Avery, Christy L., et al.
Publicado: (2022) -
Applied causal inference methods for sequential mediators
por: Zugna, D, et al.
Publicado: (2022) -
A new method of Bayesian causal inference in non-stationary environments
por: Shinohara, Shuji, et al.
Publicado: (2020) -
Application of causal inference methods in the analyses of randomised controlled trials: a systematic review
por: Farmer, Ruth E., et al.
Publicado: (2018)