Cargando…
Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive integrated moving average, and naïve forecasting methods
The coronavirus disease 2019 (COVID-19) spread rapidly across the world since its appearance in December 2019. This data set creates one-, three-, and seven-day forecasts of the COVID-19 pandemic's cumulative case counts at the county, health district, and state geographic levels for the state...
Autores principales: | Lynch, Christopher J., Gore, Ross |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834853/ https://www.ncbi.nlm.nih.gov/pubmed/33521186 http://dx.doi.org/10.1016/j.dib.2021.106759 |
Ejemplares similares
-
Future Trend Forecast by Empirical Wavelet Transform and Autoregressive Moving Average
por: Wang, Qiusheng, et al.
Publicado: (2018) -
A fractionally integrated autoregressive moving average approach to forecasting tourism demand
por: Chu, Fong-Lin
Publicado: (2008) -
Forecasting Indian infant mortality rate: An application of autoregressive integrated moving average model
por: Mishra, Amit K., et al.
Publicado: (2019) -
Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends
por: ArunKumar, K.E., et al.
Publicado: (2022) -
Forecasting the Number of Human Immunodeficiency Virus Infections in the Korean Population Using the Autoregressive Integrated Moving Average Model
por: Yu, Hye-Kyung, et al.
Publicado: (2013)