Cargando…
Multi-task contrastive learning for automatic CT and X-ray diagnosis of COVID-19
Computed tomography (CT) and X-ray are effective methods for diagnosing COVID-19. Although several studies have demonstrated the potential of deep learning in the automatic diagnosis of COVID-19 using CT and X-ray, the generalization on unseen samples needs to be improved. To tackle this problem, we...
Autores principales: | Li, Jinpeng, Zhao, Gangming, Tao, Yaling, Zhai, Penghua, Chen, Hao, He, Huiguang, Cai, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834978/ https://www.ncbi.nlm.nih.gov/pubmed/33518812 http://dx.doi.org/10.1016/j.patcog.2021.107848 |
Ejemplares similares
-
FBSED based automatic diagnosis of COVID-19 using X-ray and CT images
por: Chaudhary, Pradeep Kumar, et al.
Publicado: (2021) -
In situ phase contrast X-ray brain CT
por: Croton, Linda C. P., et al.
Publicado: (2018) -
Automatic x‐ray image contrast enhancement based on parameter auto‐optimization
por: Qiu, Jianfeng, et al.
Publicado: (2017) -
Nanoceria as Safe Contrast Agents for X-ray CT Imaging
por: García, Ana, et al.
Publicado: (2023) -
Phase-contrast X-ray CT Imaging of Esophagus and Esophageal Carcinoma
por: Zhang, Jianfa, et al.
Publicado: (2014)