Cargando…
In silico characterization of bacterial chitinase: illuminating its relationship with archaeal and eukaryotic cousins
BACKGROUND: Chitin is one of the most abundant biopolymers on Earth, only trailing second after cellulose. The enzyme chitinase is responsible for the degradation of chitin. Chitinases are found to be produced by wide range of organisms ranging from archaea to higher plants. Though chitin is a major...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835276/ https://www.ncbi.nlm.nih.gov/pubmed/33495874 http://dx.doi.org/10.1186/s43141-021-00121-6 |
Sumario: | BACKGROUND: Chitin is one of the most abundant biopolymers on Earth, only trailing second after cellulose. The enzyme chitinase is responsible for the degradation of chitin. Chitinases are found to be produced by wide range of organisms ranging from archaea to higher plants. Though chitin is a major component of fungal cell walls and invertebrate exoskeletons, bacterial chitinase can be industrially generated at low cost, in facile downstream processes at high production rate. Microbial chitinases are more stable, active, and economically practicable compared to the plant- and animal-derived enzymes. RESULTS: In the present study, computationally obtained results showed functional characteristics of chitinase with particular emphasis on bacterial chitinase which is fulfilling all the required qualities needed for commercial production. Sixty-two chitinase sequences from four different groups of organisms were collected from the RCSB Protein Data Bank. Considering one suitable exemplary sequence from each group is being compared with others. Primary, secondary, and tertiary structures are determined by in silico models. Different physical parameters, viz., pI, molecular weight, instability index, aliphatic index, GRAVY, and presence of functional motifs, are determined, and a phylogenetic tree has been constructed to elucidate relationships with other groups of organisms. CONCLUSIONS: This study provides novel insights into distribution of chitinase among four groups and their characterization. The results represent valuable information toward bacterial chitinase in terms of the catalytic properties and structural features, can be exploited to produce a range of chitin-derived products. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s43141-021-00121-6. |
---|