Cargando…
Intrinsically Motivated Exploration of Learned Goal Spaces
Finding algorithms that allow agents to discover a wide variety of skills efficiently and autonomously, remains a challenge of Artificial Intelligence. Intrinsically Motivated Goal Exploration Processes (IMGEPs) have been shown to enable real world robots to learn repertoires of policies producing a...
Autores principales: | Laversanne-Finot, Adrien, Péré, Alexandre, Oudeyer, Pierre-Yves |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835425/ https://www.ncbi.nlm.nih.gov/pubmed/33510630 http://dx.doi.org/10.3389/fnbot.2020.555271 |
Ejemplares similares
-
The effects of task difficulty, novelty and the size of the search space on intrinsically motivated exploration
por: Baranes, Adrien F., et al.
Publicado: (2014) -
In Search of the Neural Circuits of Intrinsic Motivation
por: Kaplan, Frederic, et al.
Publicado: (2007) -
Editorial: Intrinsically Motivated Open-Ended Learning in Autonomous Robots
por: Santucci, Vieri Giuliano, et al.
Publicado: (2020) -
What is Intrinsic Motivation? A Typology of Computational Approaches
por: Oudeyer, Pierre-Yves, et al.
Publicado: (2007) -
Self-organization of early vocal development in infants and machines: the role of intrinsic motivation
por: Moulin-Frier, Clément, et al.
Publicado: (2014)