Cargando…
Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality
AIMS: This study aimed to review the performance of machine learning (ML) methods compared with conventional statistical models (CSMs) for predicting readmission and mortality in patients with heart failure (HF) and to present an approach to formally evaluate the quality of studies using ML algorith...
Autores principales: | Shin, Sheojung, Austin, Peter C., Ross, Heather J., Abdel‐Qadir, Husam, Freitas, Cassandra, Tomlinson, George, Chicco, Davide, Mahendiran, Meera, Lawler, Patrick R., Billia, Filio, Gramolini, Anthony, Epelman, Slava, Wang, Bo, Lee, Douglas S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835549/ https://www.ncbi.nlm.nih.gov/pubmed/33205591 http://dx.doi.org/10.1002/ehf2.13073 |
Ejemplares similares
-
Acute Effects of Ibrutinib on Ventricular Arrhythmia in Spontaneously Hypertensive Rats
por: Du, Beibei, et al.
Publicado: (2020) -
Myocardial recovery following durable left ventricular assist device support
por: Rao, Vivek, et al.
Publicado: (2021) -
Cardiac Macrophages, Reactive Oxygen Species, and Development of Left Ventricular Dysfunction
por: Wang, Yiming, et al.
Publicado: (2017) -
Therapeutic Treatment Approaches Post–Myocardial Infarction: A Bias Toward Formyl Peptide Receptor Agonists
por: Zaman, Rysa, et al.
Publicado: (2019) -
Erratum to: Echocardiography for adult patients supported with extracorporeal membrane oxygenation
por: Douflé, Ghislaine, et al.
Publicado: (2016)