Cargando…

Crosstalk between the activated Slit2–Robo1 pathway and TGF‐β1 signalling promotes cardiac fibrosis

AIMS: Previous reports indicated that the Slit2–Robo signalling pathway is involved in embryonic heart development and fibrosis in other solid organs, but its function in adult cardiac fibrosis has not been investigated. Here, we investigate the role of the Slit2–Robo1 signalling pathway in cardiac...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yunqi, Yin, Ziwei, Xu, Xueqin, Liu, Chen, Duan, Xiaoying, Song, Qinlan, Tuo, Ying, Wang, Cuiping, Yang, Jing, Yin, Shengli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835586/
https://www.ncbi.nlm.nih.gov/pubmed/33236535
http://dx.doi.org/10.1002/ehf2.13095
_version_ 1783642559946424320
author Liu, Yunqi
Yin, Ziwei
Xu, Xueqin
Liu, Chen
Duan, Xiaoying
Song, Qinlan
Tuo, Ying
Wang, Cuiping
Yang, Jing
Yin, Shengli
author_facet Liu, Yunqi
Yin, Ziwei
Xu, Xueqin
Liu, Chen
Duan, Xiaoying
Song, Qinlan
Tuo, Ying
Wang, Cuiping
Yang, Jing
Yin, Shengli
author_sort Liu, Yunqi
collection PubMed
description AIMS: Previous reports indicated that the Slit2–Robo signalling pathway is involved in embryonic heart development and fibrosis in other solid organs, but its function in adult cardiac fibrosis has not been investigated. Here, we investigate the role of the Slit2–Robo1 signalling pathway in cardiac fibrosis. METHODS AND RESULTS: The right atrial tissue samples were obtained from patients with valvular heart disease complicated by atrial fibrillation during heart valve surgery and from healthy heart donors. The fibrotic animal model is created by performing transverse aortic constriction (TAC) surgery. The Robo1, Slit2, TGF‐β1, and collagen I expression levels in human and animal samples were evaluated by immunohistochemistry and western blot analysis. Echocardiography measured the changes in heart size and cardiac functions of animals. Angiotensin II (Ang II), Slit2‐siRNA, TGF‐β1‐siRNA, recombinant Slit2, and recombinant TGF‐β1 were transfected to cardiac fibroblasts (CFs) respectively to observe their effects on collagen I expression level. The right atrial appendage of patients with valvular heart disease complicated by atrial fibrillation found significantly up‐regulated Slit2, Robo1, TGF‐β1, and collagen I expression levels. TAC surgery leads to heart enlargement, cardiac fibrosis, and up‐regulation of Slit2, Robo1, TGF‐β1, and collagen I expression levels in animal model. Robo1 antagonist R5 and TGF‐β1 antagonist SB431542 suppressed cardiac fibrosis in TAC mice. Treatment with 100 nM Ang II in CFs caused significantly increased Slit2, Robo1, Smad2/3, TGF‐β1, collagen I, PI3K, and Akt expression levels. Transfecting Slit2‐siRNA and TGF‐β1‐siRNA, respectively, into rat CFs significantly down‐regulated Smad2/3 and collagen I expression, inhibiting the effects of Ang II. Recombinant Slit2 activated the TGF‐β1/Smad signalling pathway in CFs and up‐regulated Periostin, Robo1, and collagen I expression. CONCLUSIONS: The Slit2–Robo1 signalling pathway interfered with the TGF‐β1/Smad pathway and promoted cardiac fibrosis. Blockade of Slit2–Robo1 might be a new treatment for cardiac fibrosis.
format Online
Article
Text
id pubmed-7835586
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-78355862021-02-01 Crosstalk between the activated Slit2–Robo1 pathway and TGF‐β1 signalling promotes cardiac fibrosis Liu, Yunqi Yin, Ziwei Xu, Xueqin Liu, Chen Duan, Xiaoying Song, Qinlan Tuo, Ying Wang, Cuiping Yang, Jing Yin, Shengli ESC Heart Fail Original Research Articles AIMS: Previous reports indicated that the Slit2–Robo signalling pathway is involved in embryonic heart development and fibrosis in other solid organs, but its function in adult cardiac fibrosis has not been investigated. Here, we investigate the role of the Slit2–Robo1 signalling pathway in cardiac fibrosis. METHODS AND RESULTS: The right atrial tissue samples were obtained from patients with valvular heart disease complicated by atrial fibrillation during heart valve surgery and from healthy heart donors. The fibrotic animal model is created by performing transverse aortic constriction (TAC) surgery. The Robo1, Slit2, TGF‐β1, and collagen I expression levels in human and animal samples were evaluated by immunohistochemistry and western blot analysis. Echocardiography measured the changes in heart size and cardiac functions of animals. Angiotensin II (Ang II), Slit2‐siRNA, TGF‐β1‐siRNA, recombinant Slit2, and recombinant TGF‐β1 were transfected to cardiac fibroblasts (CFs) respectively to observe their effects on collagen I expression level. The right atrial appendage of patients with valvular heart disease complicated by atrial fibrillation found significantly up‐regulated Slit2, Robo1, TGF‐β1, and collagen I expression levels. TAC surgery leads to heart enlargement, cardiac fibrosis, and up‐regulation of Slit2, Robo1, TGF‐β1, and collagen I expression levels in animal model. Robo1 antagonist R5 and TGF‐β1 antagonist SB431542 suppressed cardiac fibrosis in TAC mice. Treatment with 100 nM Ang II in CFs caused significantly increased Slit2, Robo1, Smad2/3, TGF‐β1, collagen I, PI3K, and Akt expression levels. Transfecting Slit2‐siRNA and TGF‐β1‐siRNA, respectively, into rat CFs significantly down‐regulated Smad2/3 and collagen I expression, inhibiting the effects of Ang II. Recombinant Slit2 activated the TGF‐β1/Smad signalling pathway in CFs and up‐regulated Periostin, Robo1, and collagen I expression. CONCLUSIONS: The Slit2–Robo1 signalling pathway interfered with the TGF‐β1/Smad pathway and promoted cardiac fibrosis. Blockade of Slit2–Robo1 might be a new treatment for cardiac fibrosis. John Wiley and Sons Inc. 2020-11-24 /pmc/articles/PMC7835586/ /pubmed/33236535 http://dx.doi.org/10.1002/ehf2.13095 Text en © 2020 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Research Articles
Liu, Yunqi
Yin, Ziwei
Xu, Xueqin
Liu, Chen
Duan, Xiaoying
Song, Qinlan
Tuo, Ying
Wang, Cuiping
Yang, Jing
Yin, Shengli
Crosstalk between the activated Slit2–Robo1 pathway and TGF‐β1 signalling promotes cardiac fibrosis
title Crosstalk between the activated Slit2–Robo1 pathway and TGF‐β1 signalling promotes cardiac fibrosis
title_full Crosstalk between the activated Slit2–Robo1 pathway and TGF‐β1 signalling promotes cardiac fibrosis
title_fullStr Crosstalk between the activated Slit2–Robo1 pathway and TGF‐β1 signalling promotes cardiac fibrosis
title_full_unstemmed Crosstalk between the activated Slit2–Robo1 pathway and TGF‐β1 signalling promotes cardiac fibrosis
title_short Crosstalk between the activated Slit2–Robo1 pathway and TGF‐β1 signalling promotes cardiac fibrosis
title_sort crosstalk between the activated slit2–robo1 pathway and tgf‐β1 signalling promotes cardiac fibrosis
topic Original Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835586/
https://www.ncbi.nlm.nih.gov/pubmed/33236535
http://dx.doi.org/10.1002/ehf2.13095
work_keys_str_mv AT liuyunqi crosstalkbetweentheactivatedslit2robo1pathwayandtgfb1signallingpromotescardiacfibrosis
AT yinziwei crosstalkbetweentheactivatedslit2robo1pathwayandtgfb1signallingpromotescardiacfibrosis
AT xuxueqin crosstalkbetweentheactivatedslit2robo1pathwayandtgfb1signallingpromotescardiacfibrosis
AT liuchen crosstalkbetweentheactivatedslit2robo1pathwayandtgfb1signallingpromotescardiacfibrosis
AT duanxiaoying crosstalkbetweentheactivatedslit2robo1pathwayandtgfb1signallingpromotescardiacfibrosis
AT songqinlan crosstalkbetweentheactivatedslit2robo1pathwayandtgfb1signallingpromotescardiacfibrosis
AT tuoying crosstalkbetweentheactivatedslit2robo1pathwayandtgfb1signallingpromotescardiacfibrosis
AT wangcuiping crosstalkbetweentheactivatedslit2robo1pathwayandtgfb1signallingpromotescardiacfibrosis
AT yangjing crosstalkbetweentheactivatedslit2robo1pathwayandtgfb1signallingpromotescardiacfibrosis
AT yinshengli crosstalkbetweentheactivatedslit2robo1pathwayandtgfb1signallingpromotescardiacfibrosis