Cargando…
Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean
Recent substantial advances in high-throughput field phenotyping have provided plant breeders with affordable and efficient tools for evaluating a large number of genotypes for important agronomic traits at early growth stages. Nevertheless, the implementation of large datasets generated by high-thr...
Autores principales: | Yoosefzadeh-Najafabadi, Mohsen, Earl, Hugh J., Tulpan, Dan, Sulik, John, Eskandari, Milad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835636/ https://www.ncbi.nlm.nih.gov/pubmed/33510761 http://dx.doi.org/10.3389/fpls.2020.624273 |
Ejemplares similares
-
Genome-Wide Association Studies of Soybean Yield-Related Hyperspectral Reflectance Bands Using Machine Learning-Mediated Data Integration Methods
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2021) -
Application of machine learning and genetic optimization algorithms for modeling and optimizing soybean yield using its component traits
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2021) -
Machine-Learning-Based Genome-Wide Association Studies for Uncovering QTL Underlying Soybean Yield and Its Components
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2022) -
Application of SVR-Mediated GWAS for Identification of Durable Genetic Regions Associated with Soybean Seed Quality Traits
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2023) -
Machine Learning-Assisted Approaches in Modernized Plant Breeding Programs
por: Yoosefzadeh Najafabadi, Mohsen, et al.
Publicado: (2023)