Cargando…
Predicting lincRNA-Disease Association in Heterogeneous Networks Using Co-regularized Non-negative Matrix Factorization
Long intergenic non-coding ribonucleic acids (lincRNAs) are critical regulators for many complex diseases, and identification of disease-lincRNA association is both costly and time-consuming. Therefore, it is necessary to design computational approaches to predict the disease-lincRNA associations th...
Autores principales: | Lin, Yong, Ma, Xiaoke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835800/ https://www.ncbi.nlm.nih.gov/pubmed/33510774 http://dx.doi.org/10.3389/fgene.2020.622234 |
Ejemplares similares
-
Chromatin Landscape Distinguishes the Genomic Loci of Hundreds of Androgen-Receptor-Associated LincRNAs From the Loci of Non-associated LincRNAs
por: daSilva, Lucas F., et al.
Publicado: (2018) -
Placental circadian lincRNAs and spontaneous preterm birth
por: Zhou, Guoli, et al.
Publicado: (2023) -
Functional Urate-Associated Genetic Variants Influence Expression of lincRNAs LINC01229 and MAFTRR
por: Leask, Megan, et al.
Publicado: (2019) -
Corrigendum: Functional Urate-Associated Genetic Variants Influence Expression of lincRNAs LINC01229 and MAFTRR
por: Leask, Megan, et al.
Publicado: (2019) -
Multiple Partial Regularized Nonnegative Matrix Factorization for Predicting Ontological Functions of lncRNAs
por: Zhao, Jianbang, et al.
Publicado: (2019)