Cargando…
Double Ghost Convolution Attention Mechanism Network: A Framework for Hyperspectral Reconstruction of a Single RGB Image
Current research on the reconstruction of hyperspectral images from RGB images using deep learning mainly focuses on learning complex mappings through deeper and wider convolutional neural networks (CNNs). However, the reconstruction accuracy of the hyperspectral image is not high and among other is...
Autores principales: | Wang, Wenju, Wang, Jiangwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835855/ https://www.ncbi.nlm.nih.gov/pubmed/33477959 http://dx.doi.org/10.3390/s21020666 |
Ejemplares similares
-
A survey on computational spectral reconstruction methods from RGB to hyperspectral imaging
por: Zhang, Jingang, et al.
Publicado: (2022) -
Adversarial Networks for Scale Feature-Attention Spectral Image Reconstruction from a Single RGB
por: Liu, Pengfei, et al.
Publicado: (2020) -
Effective band selection of hyperspectral image by an attention mechanism-based convolutional network
por: Zheng, Zengwei, et al.
Publicado: (2022) -
Deep learning approach for hyperspectral image demosaicking, spectral correction and high-resolution RGB reconstruction
por: Li, Peichao, et al.
Publicado: (2021) -
Statistic and Network Features of RGB and Hyperspectral Imaging for Determination of Black Root Mold Infection in Apples
por: Sha, Wen, et al.
Publicado: (2023)