Cargando…
One-Shot Learning With Attention-Guided Segmentation in Cryo-Electron Tomography
Cryo-electron Tomography (cryo-ET) generates 3D visualization of cellular organization that allows biologists to analyze cellular structures in a near-native state with nano resolution. Recently, deep learning methods have demonstrated promising performance in classification and segmentation of macr...
Autores principales: | Zhou, Bo, Yu, Haisu, Zeng, Xiangrui, Yang, Xiaoyan, Zhang, Jing, Xu, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835881/ https://www.ncbi.nlm.nih.gov/pubmed/33511158 http://dx.doi.org/10.3389/fmolb.2020.613347 |
Ejemplares similares
-
FSCC: Few-Shot Learning for Macromolecule Classification Based on Contrastive Learning and Distribution Calibration in Cryo-Electron Tomography
por: Gao, Shan, et al.
Publicado: (2022) -
Quantitative Cryo-Electron Tomography
por: Navarro, Paula P.
Publicado: (2022) -
Few-shot learning for classification of novel macromolecular structures in cryo-electron tomograms
por: Li, Ran, et al.
Publicado: (2020) -
Editorial: Technical Advances in Cryo-Electron Microscopy
por: Rivera-Calzada, Angel, et al.
Publicado: (2019) -
Editorial: Methods in structural biology: Cryo-electron microscopy
por: Li, Zongli
Publicado: (2022)