Cargando…
Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ
Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS)...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836100/ https://www.ncbi.nlm.nih.gov/pubmed/33357446 http://dx.doi.org/10.1016/j.cell.2020.12.021 |
_version_ | 1783642676955971584 |
---|---|
author | Cappelletti, Valentina Hauser, Thomas Piazza, Ilaria Pepelnjak, Monika Malinovska, Liliana Fuhrer, Tobias Li, Yaozong Dörig, Christian Boersema, Paul Gillet, Ludovic Grossbach, Jan Dugourd, Aurelien Saez-Rodriguez, Julio Beyer, Andreas Zamboni, Nicola Caflisch, Amedeo de Souza, Natalie Picotti, Paola |
author_facet | Cappelletti, Valentina Hauser, Thomas Piazza, Ilaria Pepelnjak, Monika Malinovska, Liliana Fuhrer, Tobias Li, Yaozong Dörig, Christian Boersema, Paul Gillet, Ludovic Grossbach, Jan Dugourd, Aurelien Saez-Rodriguez, Julio Beyer, Andreas Zamboni, Nicola Caflisch, Amedeo de Souza, Natalie Picotti, Paola |
author_sort | Cappelletti, Valentina |
collection | PubMed |
description | Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other ‘omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology. |
format | Online Article Text |
id | pubmed-7836100 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-78361002021-02-01 Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ Cappelletti, Valentina Hauser, Thomas Piazza, Ilaria Pepelnjak, Monika Malinovska, Liliana Fuhrer, Tobias Li, Yaozong Dörig, Christian Boersema, Paul Gillet, Ludovic Grossbach, Jan Dugourd, Aurelien Saez-Rodriguez, Julio Beyer, Andreas Zamboni, Nicola Caflisch, Amedeo de Souza, Natalie Picotti, Paola Cell Resource Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other ‘omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology. Cell Press 2021-01-21 /pmc/articles/PMC7836100/ /pubmed/33357446 http://dx.doi.org/10.1016/j.cell.2020.12.021 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Resource Cappelletti, Valentina Hauser, Thomas Piazza, Ilaria Pepelnjak, Monika Malinovska, Liliana Fuhrer, Tobias Li, Yaozong Dörig, Christian Boersema, Paul Gillet, Ludovic Grossbach, Jan Dugourd, Aurelien Saez-Rodriguez, Julio Beyer, Andreas Zamboni, Nicola Caflisch, Amedeo de Souza, Natalie Picotti, Paola Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ |
title | Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ |
title_full | Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ |
title_fullStr | Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ |
title_full_unstemmed | Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ |
title_short | Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ |
title_sort | dynamic 3d proteomes reveal protein functional alterations at high resolution in situ |
topic | Resource |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836100/ https://www.ncbi.nlm.nih.gov/pubmed/33357446 http://dx.doi.org/10.1016/j.cell.2020.12.021 |
work_keys_str_mv | AT cappellettivalentina dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT hauserthomas dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT piazzailaria dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT pepelnjakmonika dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT malinovskaliliana dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT fuhrertobias dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT liyaozong dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT dorigchristian dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT boersemapaul dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT gilletludovic dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT grossbachjan dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT dugourdaurelien dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT saezrodriguezjulio dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT beyerandreas dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT zamboninicola dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT caflischamedeo dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT desouzanatalie dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu AT picottipaola dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu |