Cargando…

Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ

Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS)...

Descripción completa

Detalles Bibliográficos
Autores principales: Cappelletti, Valentina, Hauser, Thomas, Piazza, Ilaria, Pepelnjak, Monika, Malinovska, Liliana, Fuhrer, Tobias, Li, Yaozong, Dörig, Christian, Boersema, Paul, Gillet, Ludovic, Grossbach, Jan, Dugourd, Aurelien, Saez-Rodriguez, Julio, Beyer, Andreas, Zamboni, Nicola, Caflisch, Amedeo, de Souza, Natalie, Picotti, Paola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836100/
https://www.ncbi.nlm.nih.gov/pubmed/33357446
http://dx.doi.org/10.1016/j.cell.2020.12.021
_version_ 1783642676955971584
author Cappelletti, Valentina
Hauser, Thomas
Piazza, Ilaria
Pepelnjak, Monika
Malinovska, Liliana
Fuhrer, Tobias
Li, Yaozong
Dörig, Christian
Boersema, Paul
Gillet, Ludovic
Grossbach, Jan
Dugourd, Aurelien
Saez-Rodriguez, Julio
Beyer, Andreas
Zamboni, Nicola
Caflisch, Amedeo
de Souza, Natalie
Picotti, Paola
author_facet Cappelletti, Valentina
Hauser, Thomas
Piazza, Ilaria
Pepelnjak, Monika
Malinovska, Liliana
Fuhrer, Tobias
Li, Yaozong
Dörig, Christian
Boersema, Paul
Gillet, Ludovic
Grossbach, Jan
Dugourd, Aurelien
Saez-Rodriguez, Julio
Beyer, Andreas
Zamboni, Nicola
Caflisch, Amedeo
de Souza, Natalie
Picotti, Paola
author_sort Cappelletti, Valentina
collection PubMed
description Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other ‘omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology.
format Online
Article
Text
id pubmed-7836100
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-78361002021-02-01 Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ Cappelletti, Valentina Hauser, Thomas Piazza, Ilaria Pepelnjak, Monika Malinovska, Liliana Fuhrer, Tobias Li, Yaozong Dörig, Christian Boersema, Paul Gillet, Ludovic Grossbach, Jan Dugourd, Aurelien Saez-Rodriguez, Julio Beyer, Andreas Zamboni, Nicola Caflisch, Amedeo de Souza, Natalie Picotti, Paola Cell Resource Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other ‘omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology. Cell Press 2021-01-21 /pmc/articles/PMC7836100/ /pubmed/33357446 http://dx.doi.org/10.1016/j.cell.2020.12.021 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Resource
Cappelletti, Valentina
Hauser, Thomas
Piazza, Ilaria
Pepelnjak, Monika
Malinovska, Liliana
Fuhrer, Tobias
Li, Yaozong
Dörig, Christian
Boersema, Paul
Gillet, Ludovic
Grossbach, Jan
Dugourd, Aurelien
Saez-Rodriguez, Julio
Beyer, Andreas
Zamboni, Nicola
Caflisch, Amedeo
de Souza, Natalie
Picotti, Paola
Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ
title Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ
title_full Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ
title_fullStr Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ
title_full_unstemmed Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ
title_short Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ
title_sort dynamic 3d proteomes reveal protein functional alterations at high resolution in situ
topic Resource
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836100/
https://www.ncbi.nlm.nih.gov/pubmed/33357446
http://dx.doi.org/10.1016/j.cell.2020.12.021
work_keys_str_mv AT cappellettivalentina dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT hauserthomas dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT piazzailaria dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT pepelnjakmonika dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT malinovskaliliana dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT fuhrertobias dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT liyaozong dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT dorigchristian dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT boersemapaul dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT gilletludovic dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT grossbachjan dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT dugourdaurelien dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT saezrodriguezjulio dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT beyerandreas dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT zamboninicola dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT caflischamedeo dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT desouzanatalie dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu
AT picottipaola dynamic3dproteomesrevealproteinfunctionalalterationsathighresolutioninsitu